Combinatorics of Filters, Large Cardinal and Prikry-Type Forcing
滤波器、大基数和 Prikry 型强迫的组合
基本信息
- 批准号:2346680
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our understanding of the mathematical universe, or more precisely, the behavior of the infinite, is quite limited. The main reason for this limitation is the incapability of the Zermelo-Fraenkel axiomatic system of set theory (ZFC), which is the global standard for the formal foundations of mathematics, to determine basic questions about the infinite. This channeled the research in modern set theory to mainly two directions. The first direction is the search for new restraints imposed by ZFC on the behavior of the infinite. This direction had great success in the realm of singular cardinal arithmetic where new surprising principles were discovered by Silver and later by Shelah. This project aims to study some of these principles. The second direction is the subtle interaction between extensions of ZFC to stronger axiomatic systems and statements which are unsettled by ZFC. Perhaps the most prominent axiomatic systems are extensions of ZFC by the so-called large cardinal axioms. This project contributes to the development of new constructions with large cardinals, implementing them to analyze the interaction between those large cardinal axioms and unsettled statements. The PI will lean of his extensive experiences of mentoring underprivileged students in his teaching activities.This project deals with several central areas in set theory: (i) forcing theory and more particularly Prikry-type forcing; (ii) cardinal arithmetic; and (iii) infinitary combinatorics. Forcing with a Prikry-type forcing notion is perhaps the most important technique to generate models with non-trivial patterns of singular cardinal arithmetic. This project contributes to the investigation and sophistication of these techniques through several aspects: the development of combinatorics of ultrafilters, the discovery of new connections of this theory with other areas of set theory such as inner model theory and infinite combinatorics, the characterization of intermediate models of several Prikry-type models such as the Magidor-Radin model and the tree Prikry forcing, and obtaining stationary reflection at the successor of the first singulars of uncountable cofinalities. One particularly interesting combinatorial property of ultrafilters which is investigated in this project is the Galvin property which recently gained renewed interest due to the surprising connections of this property to the structure of ultrafilters in canonical inner models, the Tukey order, Prikry forcing, partition relations and more.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们对数学宇宙的理解,或者更准确地说,无限的行为,是相当有限的。这种限制的主要原因是Zermelo-Fraenkel公理系统的集合论(ZFC),这是数学的形式基础的全球标准,以确定有关无限的基本问题的能力。这将现代集合论的研究引向了两个主要方向。第一个方向是寻找ZFC对无限行为施加的新约束。这个方向取得了巨大成功的领域奇异基数算术新的令人惊讶的原则发现的银和后来的希拉。本项目旨在研究其中的一些原则。第二个方向是ZFC扩展到更强的公理系统和ZFC未解决的语句之间的微妙的相互作用。也许最突出的公理系统是ZFC通过所谓的大基数公理的扩展。该项目有助于开发具有大基数的新结构,并将其用于分析这些大基数公理和未解决语句之间的相互作用。该项目涉及集合论的几个核心领域:(i)强迫理论,特别是Prikry型强迫;(ii)基数算术;(iii)无穷组合学。使用Prikry类型的强制概念进行强制可能是生成具有奇异基数算术的非平凡模式的模型的最重要技术。该项目通过以下几个方面促进这些技术的调查和完善:超滤子组合学的发展,该理论与集合论的其他领域(如内模理论和无限组合学)的新联系的发现,几个Prikry型模型(如Magidor-Radin模型和树Prikry强迫)的中间模型的表征,以及在不可数共尾性的第一奇点的后继处获得静止反射。在这个项目中研究的超滤子的一个特别有趣的组合性质是Galvin性质,由于该性质与正则内模型中的超滤子结构,Tukey阶,Prikry强迫,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Benhamou其他文献
Kurepa trees and the failure of the Galvin property
库雷帕树和高尔文财产的失败
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Tom Benhamou;S. Garti;S. Shelah - 通讯作者:
S. Shelah
THE GALVIN PROPERTY UNDER THE ULTRAPOWER AXIOM
超幂公理下的加尔文性质
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tom Benhamou;G. Goldberg - 通讯作者:
G. Goldberg
Transferring compactness
传递紧凑性
- DOI:
10.1112/jlms.12940 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tom Benhamou;Jing Zhang - 通讯作者:
Jing Zhang
A small ultrafilter number at every singular cardinal
每个单一基数都有一个小的超滤器数
- DOI:
10.1007/s10474-023-01377-9 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Tom Benhamou;Sittinon Jirattikansakul - 通讯作者:
Sittinon Jirattikansakul
Prikry forcing and tree Prikry forcing of various filters
各种滤波器的 Prikry 强迫和树 Prikry 强迫
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.3
- 作者:
Tom Benhamou - 通讯作者:
Tom Benhamou
Tom Benhamou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Benhamou', 18)}}的其他基金
Combinatorics of Filters, Large Cardinal and Prikry-Type Forcing
滤波器、大基数和 Prikry 型强迫的组合
- 批准号:
2246703 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Practical Adaptive Filters and Applications
职业:实用的自适应滤波器和应用
- 批准号:
2339521 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Miniaturization of Noise Filters beyond the Limits of Magnetic Materials by Active Feedback
通过主动反馈超越磁性材料限制的噪声滤波器小型化
- 批准号:
23K13315 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BIOSPINFIL (BIOdegradable electroSPINning manufactured FILters for housed livestock farm pollution capture)
BIOSPINFIL(可生物降解的静电纺丝制造的过滤器,用于捕获畜禽养殖场污染)
- 批准号:
10083634 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
STTR Phase II: Scaling the Purification of Mycosporine-like Amino Acids to Replace Chemical Ultraviolet (UV) Filters and Protect Human and Environmental Health.
STTR 第二阶段:扩大类菌孢素氨基酸的纯化,以取代化学紫外线 (UV) 过滤器并保护人类和环境健康。
- 批准号:
2222582 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Cooperative Agreement
This project will leverage artificial neural networks to automatically build various components of particle filters.
该项目将利用人工神经网络自动构建粒子滤波器的各种组件。
- 批准号:
2841890 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Studentship
Collaborative Research: CAS: Environmentally Relevant Photoproducts of Organic UV Filters in Commercial Sunscreens
合作研究:CAS:商业防晒霜中有机紫外线过滤剂的环境相关光产品
- 批准号:
2302574 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Determination of filtration level and porosity in Additive Manufactured porous filters
增材制造多孔过滤器过滤水平和孔隙率的测定
- 批准号:
10060396 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
AMAZE : Advanced MOF-loaded Air-pollution control and Zero-emission Electrospun filters
AMAZE:先进的 MOF 负载空气污染控制和零排放静电纺丝过滤器
- 批准号:
10078131 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
Combinatorics of Filters, Large Cardinal and Prikry-Type Forcing
滤波器、大基数和 Prikry 型强迫的组合
- 批准号:
2246703 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant