ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks

ERI:电力网络分布式优化中的智能建模和参数选择

基本信息

项目摘要

This Engineering Research Initiation (ERI) grant will contribute to the advancement of national prosperity, economic welfare, and national security by funding research that addresses the challenge of optimizing large-scale networked systems such as nation’s power system, which is rapidly evolving due to the growing prevalence of renewable energy sources and electric vehicles. This award supports research examining the development of innovative algorithms enabling multiple agents to communicate and collaborate effectively in solving complex network optimization problems while safeguarding individual privacy. By integrating mathematical optimization and engineering, the results of this cross-disciplinary project will benefit academic and industrial researchers, data scientists, and policymakers. The educational and outreach activities seek to inspire STEM students, especially those from underrepresented groups, to explore data-driven methodologies in science and engineering through initiatives like summer research programs.This research creates intelligent modeling and parameter selection methods to address important challenges in distributed optimization (DO), a promising approach for a broad class of complex networked systems such as the quickly evolving modern power networks. This research designs innovative partitioning techniques to improve the slow convergence of DO algorithms. This approach not only simplifies the customization of DO by reducing the number of sub-problems but also imposes desirable structures on the sub-problems. The PI devises adaptive and learning-based strategies to address the pervasive challenge of parameter selection for DO algorithms using both classical parameter selection techniques and learning-based methods, such as physics-informed deep learning. The research will also examine the robustness of DO algorithms to data uncertainty and communication errors. Results will be disseminated through open-source optimization software packages, facilitating the real-world implementation of these innovative algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该工程研究启动(ERI)赠款将通过资助解决优化大型网络系统(如国家电力系统)的挑战的研究,为促进国家繁荣,经济福利和国家安全做出贡献,由于可再生能源和电动汽车的日益普及,电力系统正在迅速发展。该奖项支持研究创新算法的开发,使多个代理能够有效地沟通和协作,解决复杂的网络优化问题,同时保护个人隐私。通过整合数学优化和工程,这个跨学科项目的结果将使学术和工业研究人员,数据科学家和政策制定者受益。教育和推广活动旨在激励STEM学生,特别是那些来自代表性不足的群体的学生,通过暑期研究计划等举措探索科学和工程中的数据驱动方法。这项研究创建了智能建模和参数选择方法,以解决分布式优化(DO)中的重要挑战,这是一种很有前途的方法,适用于广泛的复杂网络系统,如快速发展的现代电力网络。本研究设计创新的分割技术,以改善DO算法的缓慢收敛。这种方法不仅通过减少子问题的数量来简化DO的定制,而且还对子问题施加了期望的结构。PI设计了自适应和基于学习的策略,以解决使用经典参数选择技术和基于学习的方法(如物理信息深度学习)的DO算法的参数选择的普遍挑战。该研究还将研究DO算法对数据不确定性和通信错误的鲁棒性。结果将通过开源优化软件包传播,促进这些创新算法的实际应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehdi Karimi其他文献

Propolis supplementation improves cardiometabolic health in patients with type 2 diabetes mellitus: findings from a GRADE-assessed systematic review and meta-analysis of RCTs
  • DOI:
    10.1007/s40200-025-01682-w
  • 发表时间:
    2025-07-12
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Mehdi Karimi;Nazgol Bahreini;Samira Pirzad;Seyed Morteza Ali Pourfaraji;Niyusha Shirsalimi;Omid Asbaghi;Bagher Larijani
  • 通讯作者:
    Bagher Larijani
Posterior tracheal diverticulum: a case report
  • DOI:
    10.1186/s13256-024-04851-2
  • 发表时间:
    2024-10-31
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Afsaneh Safarian;Mehdi Karimi;Niloofar Deravi;Reza Naseri;Khosrow Agin
  • 通讯作者:
    Khosrow Agin
Late relapse of anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis: a case report
  • DOI:
    10.1186/s13256-024-04886-5
  • 发表时间:
    2024-11-29
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Hamidreza Amiri;Mehdi Karimi;Fakhreddin Shariatmadari
  • 通讯作者:
    Fakhreddin Shariatmadari
Workspace analysis of parallel mechanisms by considering active joints ranges of motion using a method based on interval analysis
  • DOI:
    10.1007/s11012-024-01892-1
  • 发表时间:
    2025-04-07
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Fatemeh Pourkariman;Mehdi Karimi;Payam Varshovi-Jaghargh;Mehdi Tale Masouleh
  • 通讯作者:
    Mehdi Tale Masouleh
Effect of Atracurium versus Cisatracurium on QT interval changes in patients undergoing cataract surgery: a randomized clinical trial
  • DOI:
    10.1186/s12871-024-02820-2
  • 发表时间:
    2024-11-27
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Mehdi Karimi;Ali Ghaheri;Kianmehr Saleh;Zahra Cheraghi;Afshin Farahanchi
  • 通讯作者:
    Afshin Farahanchi

Mehdi Karimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CAREER: Physical Object Modeling for Intelligent Systems
职业:智能系统的物理对象建模
  • 批准号:
    2338203
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Transforming Equilibrium Analysis Paradigm for Modeling Transportation Networks with Intelligent Traveling Agents
转变平衡分析范式,利用智能旅行社对交通网络进行建模
  • 批准号:
    2233057
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2212297
  • 财政年份:
    2022
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
3D Intelligent Spatial Modeling for Infrastructure Digital Twins
基础设施数字孪生的 3D 智能空间建模
  • 批准号:
    RGPIN-2020-07144
  • 财政年份:
    2022
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
  • 批准号:
    RGPIN-2017-05872
  • 财政年份:
    2022
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2212296
  • 财政年份:
    2022
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2212298
  • 财政年份:
    2022
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Intelligent Reliability Assurance Using Dynamics Modeling and Machine Learning
使用动力学建模和机器学习的智能可靠性保证
  • 批准号:
    RGPIN-2021-02900
  • 财政年份:
    2021
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
  • 批准号:
    RGPIN-2017-05872
  • 财政年份:
    2021
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了