CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
基本信息
- 批准号:2348177
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The larger volume of user data collected from various sources has led to the advancement of machine learning and the adoption of these machine learning models in many real-world applications. However, user data is often highly sensitive, and unauthorized data releases have sparked increased concerns about privacy. In response, recent regulations compel organizations to allow users to proactively remove their data from a system for increased privacy protection. However, deleting data from machine-learning models and systems is non-trivial. Further, law scholars have criticized the continued use of machine learning models trained on deleted data instances as it violates privacy. This project significantly contributes to theoretically and empirically understanding the risk of privacy leaks in the context of machine learning models. The project's broader significance and importance are that the developed algorithms guarantee users the right to have their data and the influence of data completely deleted in systems such as social media, healthcare, finance, etc. This project addresses new research problems related to machine unlearning. It investigates privacy leakage risk and validity of (1) model explanation, (2) model pruning, and (3) transfer learning when user data has been deleted and machine unlearning happens. This project also tackles the subsequent tasks of designing unlearning algorithms to eliminate the influence of forgotten data from explanations, pruning models, and transferring knowledge. Frequent deletion requests often encounter expensive costs, and existing approximate unlearning algorithms cannot be applied to the formulation of explanation, pruning, and transfer learning. The investigator is developing efficient removal algorithms to perform an update step of forgetting data on the explanation, pruned structure, and transfer learning. This project also features a pipeline to handle frequent data deletion requests in high-stakes domains where user information is especially sensitive. With these contributions, the project will catalyze research progress on the topic of the right to be forgotten and ease users’ concerns about privacy in machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从各种来源收集的大量用户数据导致了机器学习的进步,并在许多现实世界的应用中采用了这些机器学习模型。然而,用户数据往往高度敏感,未经授权的数据泄露引发了人们对隐私的日益担忧。作为回应,最近的法规迫使组织允许用户主动从系统中删除他们的数据,以加强隐私保护。然而,从机器学习模型和系统中删除数据绝非易事。此外,法律学者批评继续使用针对删除的数据实例训练的机器学习模型,因为这侵犯了隐私。该项目对在机器学习模型的背景下从理论和经验上理解隐私泄露风险做出了重要贡献。该项目更广泛的意义和重要性在于,开发的算法保证了用户有权在社交媒体、医疗保健、金融等系统中完全删除他们的数据和数据的影响。该项目解决了与机器遗忘相关的新研究问题。研究了(1)模型解释、(2)模型剪枝和(3)迁移学习在用户数据被删除和机器遗忘发生时的隐私泄露风险和有效性。该项目还解决了后续任务,即设计遗忘算法,以消除解释、修剪模型和传递知识时忘记数据的影响。频繁的删除请求往往会带来昂贵的代价,现有的近似遗忘算法不能应用于解释、剪枝和迁移学习的制定。研究人员正在开发有效的移除算法,以执行忘记解释、修剪结构和迁移学习上的数据的更新步骤。该项目还具有一条管道,用于处理高风险域中频繁的数据删除请求,在这些域中,用户信息特别敏感。通过这些贡献,该项目将促进关于被遗忘权主题的研究进展,并缓解用户对机器学习中隐私的担忧。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Hui其他文献
Image Generation of Egyptian Hieroglyphs
埃及象形文字的图像生成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Song Gao;Bo Hui;Wanwan Li - 通讯作者:
Wanwan Li
Experimental simulation of fracture propagation and extension in hydraulic fracturing: A state-of-the-art review
水力压裂中裂缝扩展与延伸的实验模拟:最新技术综述
- DOI:
10.1016/j.fuel.2024.131021 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:7.500
- 作者:
Jiajie Yu;Nianyin Li;Bo Hui;Wen Zhao;Yue Li;Jia Kang;Peng Hu;Yu Chen - 通讯作者:
Yu Chen
A multi-generation system with integrated solar energy, combining energy storage, cooling, heat, and hydrogen production functionalities: Mathematical model and thermo-economic analysis
- DOI:
10.1016/j.renene.2024.120812 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Penglai Wang;Qibin Li;Shukun Wang;Bo Hui - 通讯作者:
Bo Hui
1.38 Ga magmatism and the extension tectonics in East Kunlun, northern Tibetan Plateau
- DOI:
10.1016/j.precamres.2024.107551 - 发表时间:
2024-09-15 - 期刊:
- 影响因子:
- 作者:
Dengfeng He;Yunpeng Dong;Christoph A. Hauzenberger;Yuangang Yue;Bo Hui;Bo Zhou;Xiang Ren;Bin Zhang;Fubao Chong - 通讯作者:
Fubao Chong
Experimental investigation of a 10 kW photovoltaic power system and lithium battery energy storage system for off-grid electro-hydrogen coupling
用于离网电 - 氢耦合的10千瓦光伏发电系统和锂电池储能系统的实验研究
- DOI:
10.1016/j.csite.2025.105877 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:6.400
- 作者:
Bo Hui;Fu Liang;Fan Ren;Shengneng Zhu;Sijun Su;Wenjuan Li;Qibin Li - 通讯作者:
Qibin Li
Bo Hui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant