CRII: AF: RUI: Algorithmic Fairness for Computational Social Choice Models

CRII:AF:RUI:计算社会选择模型的算法公平性

基本信息

  • 批准号:
    2348275
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Computers now support many kinds of preference aggregation/voting systems and have even made new ones possible, driving deeper study into computational social choice. For example, online liquid democracy platforms allow users to vote directly on a topic or delegate their vote to a trusted proxy whom they believe is more informed and will represent their interests. These systems have allowed businesses to make collective decisions on issues ranging from product design to food offered in the corporate cafeteria. However, recent audits of algorithms used in machine learning and artificial intelligence systems have taught us that algorithmic decisions made by computers have the potential to unintentionally disadvantage individuals or groups of people. Such algorithmic bias and discrimination can be countered by designing algorithms with specific fairness guarantees built in. This project will investigate computational social choice through an algorithmic fairness lens and illuminate the theoretical limitations of achieving difficult or conflicting concepts of fairness. In addition to advancing knowledge that benefits society and the research community, topics studied in this project will be used to enrich courses at every level of the computer science curriculum with engaging real-world applications, and lessons featuring these topics will be shared with the broader computer science education community. Finally, the investigator will mentor undergraduate students from traditionally underrepresented groups in computer science, diversifying the pipeline to graduate school. Algorithms are commonly used to implement existing and proposed preference aggregation/voting systems as well as to analyze them. At the same time, algorithmic bias and discrimination has been documented in a broad range of applications from hiring to medicine to criminal justice. In many of these areas, the research community has responded by formalizing computational definitions of fairness and designing algorithms that explicitly offer fairness guarantees, especially for machine learning tasks such as classification or recommendation. At a high level, this project seeks to unite computational social choice and the recent research into algorithmic fairness and fairness, accountability, and transparency (FAccT) in automated systems more broadly. The main contributions to computer science and other disciplines will be: (1) Formulating new computational problems, objectives, and constraints for implementing and evaluating voting systems that can guide future work in algorithmic fairness that is grounded in a specific real-world application; (2) Designing and analyzing algorithms for these problems that can provide fairness guarantees; and (3) Proving impossibility results that establish which notions of fairness in these settings are incompatible with each other or intractable. A focus of (1) will be to build connections between foundational, theoretical work in algorithmic fairness and specific application areas in computational social choice. The work of (3) will echo the seminal impossibility results in the areas of both algorithmic fairness and social choice theory. Thus, (1) and (3) will inform the investigator’s own work on (2), but also pose new problems to the research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机现在支持多种偏好聚合/投票系统,甚至使新的系统成为可能,推动了对计算社会选择的深入研究。例如,在线流动民主平台允许用户直接就某个话题投票,或将投票委托给他们认为更知情并能代表他们利益的可信代理人。这些系统允许企业就从产品设计到公司自助餐厅提供的食物等问题做出集体决定。然而,最近对机器学习和人工智能系统中使用的算法的审计告诉我们,计算机做出的算法决策有可能无意中使个人或群体处于不利地位。这种算法偏见和歧视可以通过设计具有特定公平性保证的算法来抵消。这个项目将通过算法公平透镜研究计算社会选择,并阐明实现困难或冲突的公平概念的理论局限性。除了推进有益于社会和研究界的知识外,本项目中研究的主题将用于丰富计算机科学课程各个层次的课程,使其具有现实世界的应用,并将与更广泛的计算机科学教育界分享这些主题的课程。最后,调查员将指导计算机科学传统上代表性不足的群体的本科生,使研究生院的管道多样化。算法通常用于实现现有的和建议的偏好聚合/投票系统,以及分析它们。与此同时,算法偏见和歧视已经在从招聘到医学再到刑事司法的广泛应用中被记录下来。在许多这些领域,研究界已经通过形式化公平性的计算定义和设计明确提供公平性保证的算法做出了回应,特别是对于分类或推荐等机器学习任务。在高层次上,该项目旨在更广泛地将计算社会选择与最近对自动化系统中算法公平性和公平性,问责制和透明度(FAccT)的研究结合起来。对计算机科学和其他学科的主要贡献将是:(1)制定新的计算问题,目标和约束,用于实现和评估投票系统,这些系统可以指导未来基于特定现实世界应用的算法公平性工作;(2)设计和分析这些问题的算法,可以提供公平性保证;(3)证明不可能的结果,确定在这些设置中哪些公平概念是相互不相容的或难以解决的。(1)的重点将是在算法公平性的基础理论工作与计算社会选择的特定应用领域之间建立联系。(3)的工作将呼应算法公平和社会选择理论领域的开创性不可能结果。因此,(1)和(3)将告知研究者自己的工作(2),但也提出了新的问题,以研究community.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Brubach其他文献

Attenuate Locally, Win Globally: Attenuation-Based Frameworks for Online Stochastic Matching with Timeouts
局部衰减,全局获胜:基于衰减的在线随机匹配框架
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Brian Brubach;Karthik Abinav Sankararaman;A. Srinivasan;Pan Xu
  • 通讯作者:
    Pan Xu
Vertex-weighted Online Stochastic Matching with Patience Constraints
具有耐心约束的顶点加权在线随机匹配
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Brubach;Nathaniel Grammel;A. Srinivasan
  • 通讯作者:
    A. Srinivasan
Meddling Metrics: the Effects of Measuring and Constraining Partisan Gerrymandering on Voter Incentives
干预指标:衡量和限制党派不公正划分对选民激励的影响
Improved Online Square-into-Square Packing
改进的在线方对方包装
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Brubach
  • 通讯作者:
    Brian Brubach
Characterizing Properties and Trade-offs of Centralized Delegation Mechanisms in Liquid Democracy
流动民主中集中化授权机制的特征和权衡

Brian Brubach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于前瞻性队列的双酚AF联合果糖加重代谢损伤的靶向代谢组学研究
  • 批准号:
    2025JJ30049
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
U2AF2-circMMP1信号轴促进结直肠癌进展的分子机制研究
  • 批准号:
    2025JJ80723
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
U2AF2精氯酸甲基化调控RNA转录合成在MTAP缺失骨肉瘤T细胞耗竭中的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
BDA-366通过MYD88/NF-κB/PGC1β通路杀伤 KMT2A/AF9 AML细胞的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
Lu AF21934减少缺血性脑卒中导致的神经损伤的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
H2S介导剪接因子BraU2AF65a的S-巯基化修饰促进大白菜开花的分子机制
  • 批准号:
    32372727
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
线粒体活性氧介导的胎盘早衰在孕期双酚AF暴露致婴幼儿神经发育迟缓中的作用
  • 批准号:
    82304160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
U2AF2-circMMP1调控能量代谢促进结直肠癌肝转移的分子机制
  • 批准号:
    82303789
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: AF: RUI: New Frontiers in Fundamental Error-Correcting Codes
CRII:AF:RUI:基本纠错码的新领域
  • 批准号:
    2347371
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: RUI: Data Science from Economic Foundations
合作研究:AF:小型:RUI:来自经济基础的数据科学
  • 批准号:
    2218814
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: AF: RUI: Breaking Ground on Circulant TSP
CRII:AF:RUI:循环 TSP 破土动工
  • 批准号:
    2153331
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: RUI: Data Science from Economic Foundations
合作研究:AF:小型:RUI:来自经济基础的数据科学
  • 批准号:
    2218813
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: AF: RUI: New Approaches for Space-Efficient Similarity Search
CRII:AF:RUI:节省空间的相似性搜索的新方法
  • 批准号:
    2103813
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: AF: RUI: Markov Chains and Random Sampling on Graphs
CRII:AF:RUI:马尔可夫链和图上的随机采样
  • 批准号:
    2104795
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: AF: RUI: Engineering and Experiments with Geometric Spanner Construction Algorithms for Massive Point Sets
CRII:AF:RUI:大规模点集的几何扳手构造算法的工程和实验
  • 批准号:
    1947887
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: AF: RUI: Verifiable Computation Outsourcing: A Non-Cooperative Approach
CRII:AF:RUI:可验证计算外包:一种非合作方法
  • 批准号:
    1947789
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Towards Resolving the Dynamic Optimality Conjecture.
AF:小:RUI:解决动态最优猜想。
  • 批准号:
    1910873
  • 财政年份:
    2019
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了