CAREER: Mitigating Detrimental Vibrational Effects in Organic Semiconductors

职业:减轻有机半导体中的有害振动影响

基本信息

  • 批准号:
    2348765
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Organic semiconductors are a promising class of materials with the potential to revolutionize advanced electronic devices, from flexible displays to high-efficiency solar cells. Their widespread use is currently limited by atomic-level motions that, in many cases, reduce the effectiveness of the material. In this project, these motions – specifically those that occur at terahertz frequencies – will be investigated using a combined experimental and computational approach. The PI will investigate and quantify the precise dynamics that influence the performance of organic semiconducting materials with atomic-level precision. Through this research an unprecedented level of insight will be gained, which translates to the ability to rationally engineer new materials that suppress detrimental phenomena. This research is strongly connected to the training and education of young scientists, with trainees directly involved in the research from all career stages, from undergraduates to postgraduates. In addition, the PI will develop a university-level course that incorporates the results of this research in order to further enhance the training of young scientists. The trainees involved in the research, in conjunction with the PI, are also directly involved in efforts to communicate this cutting-edge research to the wider community. Through a collaboration with a local art museum, the PI is working to expand the reach of the developed methods to aid in the characterization, identification, and preservation of artwork in their collections. This is extended to K-12 education through a partnership with a local school district, where workshops and training opportunities are offered, providing a convergence of cutting-edge research with the development of the next generation of STEM professionals.The role that low-frequency (terahertz) dynamics play in a wide-variety of bulk phenomena in organic semiconductors has been elucidated in recent years. Specifically, large-amplitude vibrational motions occurring at terahertz frequencies have been shown to be pivotal to rationalizing the charge-carrier dynamics of these materials. In many cases, detrimental electron-phonon coupling from a single-terahertz vibration is sufficient to significantly reduce charge-carrier mobility, a critical parameter for realizing advanced electronics. This research leverages experimental terahertz time-domain spectroscopy with quantum mechanical simulations to explore the crucial role that terahertz phonons play on the properties of organic semiconducting solids. This project involves the design and implementation of new experimental and theoretical methods – methods that are also applicable to solid-state materials in general. Specifically, optical pump-terahertz probe spectroscopy is used to directly sample both charge-carrier dynamics, as well as electron-phonon coupling, while anharmonic density functional theory simulations are performed to predict temperature- and pressure-dependent properties. The results of these experiments are used to rationally design new materials, using experimental organic synthetic methods as well as computational crystal structure design. This research also integrates multiple educational activities that are a benefit to a wide cross-section of society, including future STEM leaders and the non-scientific community. Through a collaboration with the Fleming Museum of Art, terahertz imaging methods are applied to reveal hidden features in artwork, such as a signature obscured by layers of paint. An exhibit based on this research is planned to be put on display at the museum, along with workshops for the general community and K-12 students. Additionally, a new course for advanced undergraduates and graduate students is being developed based on this project, which will translate to growing expertise in this important area of the materials sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有机半导体是一类很有前途的材料,有可能彻底改变先进的电子设备,从柔性显示器到高效太阳能电池。它们的广泛使用目前受到原子级运动的限制,在许多情况下,原子级运动会降低材料的有效性。在这个项目中,这些运动-特别是那些发生在太赫兹频率-将使用实验和计算相结合的方法进行研究。PI将以原子级精度研究和量化影响有机半导体材料性能的精确动力学。通过这项研究,将获得前所未有的洞察力,这将转化为合理设计抑制有害现象的新材料的能力。这项研究与青年科学家的培训和教育密切相关,从本科生到研究生,所有职业阶段的受训人员都直接参与研究。此外,PI将开发一个大学级课程,纳入这项研究的结果,以进一步加强年轻科学家的培训。参与研究的受训人员与PI一起,也直接参与向更广泛的社区传播这一前沿研究的努力。通过与当地艺术博物馆的合作,PI正在努力扩大已开发方法的范围,以帮助其收藏中艺术品的表征,鉴定和保存。通过与当地学区的合作,这一计划扩展到了K-12教育,在那里提供研讨会和培训机会,将尖端研究与下一代STEM专业人员的发展融合在一起。近年来,低频(太赫兹)动力学在有机半导体中各种各样的体现象中所起的作用得到了阐明。具体而言,在太赫兹频率下发生的大振幅振动运动已被证明是合理化这些材料的电荷载流子动力学的关键。在许多情况下,来自单个太赫兹振动的有害电子-声子耦合足以显著降低电荷载流子迁移率,这是实现先进电子学的关键参数。本研究利用实验太赫兹时域光谱与量子力学模拟,探索太赫兹声子对有机半导体固体性质的关键作用。该项目涉及新的实验和理论方法的设计和实施-这些方法也适用于一般的固态材料。具体而言,光泵太赫兹探测光谱是用来直接采样的电荷载流子动力学,以及电子-声子耦合,而非谐波密度泛函理论模拟进行预测温度和压力相关的属性。这些实验的结果用于合理设计新材料,使用实验有机合成方法以及计算晶体结构设计。这项研究还整合了多种教育活动,这些活动有利于社会的广泛领域,包括未来的STEM领导者和非科学界。通过与弗莱明艺术博物馆的合作,太赫兹成像方法被应用于揭示艺术品中隐藏的特征,例如被油漆层掩盖的签名。一个基于这项研究的展览计划在博物馆展出,沿着为一般社区和K-12学生举办的讲习班。此外,一个新的课程,为先进的本科生和研究生正在开发基于这个项目,这将转化为不断增长的专业知识,在这一重要领域的材料科学。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Side-chain torsional dynamics strongly influence charge transport in organic semiconductors
侧链扭转动力学强烈影响有机半导体中的电荷传输
  • DOI:
    10.1039/d2cc04979a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Banks, Peter A.;Dyer, Adam M.;Whalley, Adam C.;Ruggiero, Michael T.
  • 通讯作者:
    Ruggiero, Michael T.
Advances in Low-Frequency Vibrational Spectroscopy and Applications in Crystal Engineering
  • DOI:
    10.1021/acs.cgd.1c00850
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Elyse M. Kleist;M. Ruggiero
  • 通讯作者:
    Elyse M. Kleist;M. Ruggiero
Lattice Dynamics: The Unexplored Multidimensional Dynamic Playground of Molecular Crystalline Materials
晶格动力学:分子晶体材料的未探索的多维动态游乐场
  • DOI:
    10.1021/acs.cgd.4c00226
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Catalano, Luca;Hutchins, Kristin M.;Bardeen, Christopher J.;Ruggiero, Michael T.
  • 通讯作者:
    Ruggiero, Michael T.
Anharmonic Coupling of Stretching Vibrations in Ice: A Periodic VSCF and VCI Description
冰中拉伸振动的非谐耦合:周期性 VSCF 和 VCI 描述
  • DOI:
    10.1021/acs.jctc.2c00217
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Schireman, Raymond G.;Maul, Jefferson;Erba, Alessandro;Ruggiero, Michael T.
  • 通讯作者:
    Ruggiero, Michael T.
The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra
  • DOI:
    10.1039/d1cp02496e
  • 发表时间:
    2021-09-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Banks, Peter A.;Burgess, Luke;Ruggiero, Michael T.
  • 通讯作者:
    Ruggiero, Michael T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Ruggiero其他文献

Rapid acquisition and dissemination of standardized biological inventories from Russian Biosphere Reserves
  • DOI:
    10.1023/a:1023685928666
  • 发表时间:
    2003-07-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Robert J. Meese;Valeri M. Neronov;Gleb M. Alestchenko;Michael Ruggiero
  • 通讯作者:
    Michael Ruggiero
A Motion-Activated Video Game for Prevention of Substance Use Disorder Relapse in Youth: Pilot Randomized Controlled Trial (Preprint)
用于预防青少年药物滥用障碍复发的动作激活视频游戏:试点随机对照试验(预印本)
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Abroms;M. Fishman;H. Vo;Shawn C Chiang;Victoria Somerville;Lawrence Rakhmanov;Michael Ruggiero;D. Greenberg
  • 通讯作者:
    D. Greenberg

Michael Ruggiero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Ruggiero', 18)}}的其他基金

Collaborative: Terahertz Spectroscopy of Clathrates
合作:包合物的太赫兹光谱
  • 批准号:
    2346689
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Mitigating Detrimental Vibrational Effects in Organic Semiconductors
职业:减轻有机半导体中的有害振动影响
  • 批准号:
    2046483
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative: Terahertz Spectroscopy of Clathrates
合作:包合物的太赫兹光谱
  • 批准号:
    2055402
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Tip-Enhanced Nano Raman Spectroscopy (TERS) Microscope for Soft Matter Research and Education
MRI:购买尖端增强纳米拉曼光谱 (TERS) 显微镜用于软物质研究和教育
  • 批准号:
    1919610
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
Improving females' health and performance by mitigating heat strain
通过缓解热应激改善女性的健康和表现
  • 批准号:
    MR/X036235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Mitigating the Influence of Social Bots in Heterogeneous Social Networks
减轻异构社交网络中社交机器人的影响
  • 批准号:
    DP240100181
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Projects
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
IMPLEMENTATION: Shifting Culture and Mitigating Inequities in Landscape Ecology Through a Collaborative Network of Professional Societies
实施:通过专业协会的合作网络转变文化并减轻景观生态学中的不平等
  • 批准号:
    2335225
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Temporary Pacing Leads - Scoping and Mitigating Environmental Impact
临时起搏导联 - 界定和减轻环境影响
  • 批准号:
    10086805
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了