Variable Coefficient Fourier Analysis
变系数傅里叶分析
基本信息
- 批准号:2348996
- 负责人:
- 金额:$ 39.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The PI will study several problems in Geometric Harmonic Analysis. The settings for these problems involve geometric manifolds of dimension two or more. Associated with a given manifold are fundamental objects called eigenfunctions. These are the fundamental modes of vibration of the manifold, and they are the higher dimensional analogs of the familiar trigonometric functions for the circle. Designers of musical instruments are well aware that the shape of, say, a drum or the soundboard of stringed instrument affects the basic tones that it omits, as well as the sound volume. Similar phenomena arise for manifolds, and the PI will study precisely how their shapes, such as how they are curved, affect the properties properties of eigenfunctions. Just as in music, one particularly expects different shapes and geometries to become more apparent in the behavior of the fundamental modes of vibration as the frequency becomes larger and larger. These eigenfunctions are solutions of a differential equation that is similar to the wave equation, and the PI will study similar problems involving it. The general theme is to study how solutions of wave equations are affected by their physical backgrounds, such as whether or not black holes are present or whether the background becomes very close to a vacuum near infinity. This project provides research training opportunities for graduate students.Among the specific problems the PI shall study, they wish to obtain improved estimates that measure the size and concentration of eigenfunctions. In order to do this, they will develop what is called ``global harmonic analysis’’, which is a mixture of classical harmonic analysis, microlocal analysis, and techniques from geometry. The basic estimates are Lp-estimates for eigenfunctions and quasimodes and related highly localized L2 estimates that are sensitive to concentration. The main questions center around how the geometry and the global dynamics of the geodesic flow affect the estimates and the kinds of functions that saturate them. The latter issue is closely related to the much-studied (but still not well-understood) questions of concentration, oscillation, and size properties of modes and quasimodes in spectral asymptotics. These questions are also naturally linked to the long-time properties of the solution operator for the wave equation, Schrodinger equation, and resolvent estimates coming from the metric Laplacian. High frequency solutions and obtaining sharp results under geometric assumptions are particularly interesting. They will also study functions that saturate the estimates in different ways depending on the sign of the sectional curvatures of the manifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将研究几何调和分析中的几个问题。 这些问题的设置涉及二维或二维以上的几何流形。 与给定流形相关联的是称为本征函数的基本对象。 这些是流形振动的基本模式,它们是熟悉的圆三角函数的高维类似物。 乐器的设计师们都很清楚,比如说鼓或弦乐器的音板的形状会影响它所忽略的基本音调,以及音量。 类似的现象也出现在流形上,PI将精确地研究它们的形状,比如它们是如何弯曲的,如何影响本征函数的性质。 就像在音乐中一样,人们特别期望随着频率变得越来越大,不同的形状和几何形状在振动的基本模式的行为中变得更加明显。 这些本征函数是与波动方程类似的微分方程的解,PI将研究与之相关的类似问题。总的主题是研究波动方程的解如何受到其物理背景的影响,例如黑洞是否存在或背景是否变得非常接近无穷大附近的真空。该项目为研究生提供了研究培训的机会。在PI应研究的具体问题中,他们希望获得测量本征函数大小和浓度的改进估计。 为了做到这一点,他们将开发所谓的“全球谐波分析”,这是一个混合的经典谐波分析,微观局部分析,和技术从几何。 基本的估计是Lp-估计的本征函数和准模和相关的高度本地化的L2估计是敏感的浓度。 主要的问题集中在如何几何和全球动态的测地线流影响的估计和饱和的功能,他们的种类。 后一个问题是密切相关的研究(但仍然没有很好地理解)的浓度,振荡和尺寸特性的模式和准模式的谱渐近的问题。 这些问题也自然地与波动方程、薛定谔方程的解算子的长时间性质以及来自度量拉普拉斯算子的预解估计有关。 高频解和在几何假设下获得尖锐的结果特别有趣。 他们还将研究根据歧管截面曲率的符号以不同方式饱和估计的函数。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Sogge其他文献
Christopher Sogge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Sogge', 18)}}的其他基金
Variable Coefficient Fourier Analysis
变系数傅立叶分析
- 批准号:
1665373 - 财政年份:2017
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Variable Coefficient Fourier Analysis
变系数傅立叶分析
- 批准号:
1361476 - 财政年份:2014
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Variable Coefficient Fourier Analysis
变系数傅立叶分析
- 批准号:
1069175 - 财政年份:2011
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Variable coefficient Fourier Analysis and its applications
变系数傅立叶分析及其应用
- 批准号:
0555162 - 财政年份:2006
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
FRG Collaborative Proposal: Eigenfunctions of the Laplacian
FRG 合作提案:拉普拉斯算子的本征函数
- 批准号:
0354386 - 财政年份:2004
- 资助金额:
$ 39.09万 - 项目类别:
Standard Grant
Nonlinear hyperbolic differential equations and Fourier analysis
非线性双曲微分方程和傅里叶分析
- 批准号:
0099642 - 财政年份:2001
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variable Coefficient Fourier Analysis
数学科学:变系数傅立叶分析
- 批准号:
9696194 - 财政年份:1996
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variable Coefficient Fourier Analysis
数学科学:变系数傅里叶分析
- 批准号:
9424418 - 财政年份:1995
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
相似海外基金
Variable Coefficient Fourier Analysis
变系数傅立叶分析
- 批准号:
1665373 - 财政年份:2017
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Variable Coefficient Fourier Analysis
变系数傅立叶分析
- 批准号:
1361476 - 财政年份:2014
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Variable Coefficient Fourier Analysis
变系数傅立叶分析
- 批准号:
1069175 - 财政年份:2011
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Variable coefficient Fourier Analysis and its applications
变系数傅立叶分析及其应用
- 批准号:
0555162 - 财政年份:2006
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variable Coefficient Fourier Analysis
数学科学:变系数傅立叶分析
- 批准号:
9696194 - 财政年份:1996
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variable Coefficient Fourier Analysis
数学科学:变系数傅里叶分析
- 批准号:
9424418 - 财政年份:1995
- 资助金额:
$ 39.09万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variable Coefficient Fourier Analysis
数学科学:变系数傅立叶分析
- 批准号:
9202489 - 财政年份:1992
- 资助金额:
$ 39.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Variable Coefficient Fourier Analysis
数学科学:变系数傅里叶分析
- 批准号:
9001792 - 财政年份:1990
- 资助金额:
$ 39.09万 - 项目类别:
Standard Grant