REU Site: Computational Number Theory

REU 网站:计算数论

基本信息

  • 批准号:
    2349174
  • 负责人:
  • 金额:
    $ 28.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-11-01 至 2027-10-31
  • 项目状态:
    未结题

项目摘要

Eight students across the country will participate in an eight-week research experience in computational number theory at Clemson University each year of this project. The goal of this program is to help students attain a higher level of independence in mathematical research by having them take part in significant and interesting research projects. Participants will be introduced to various tools, techniques, and problems from number theory and will work on important and often difficult problems that are suitable for undergraduate work. This program will not only provide the participants with the opportunities to broaden their knowledge in their research area but will also give participants the opportunity to become better expositors of their research. This will be accomplished through student lectures during and at the end of the program that will include two presentations in different formats. The PIs will organize an annual REU conference that will enable the students to interact with and learn from students in other REU programs in the region. The conference will provide the students with a valuable opportunity to deliver their first professional talk in a friendly atmosphere and will also help to disseminate the results obtained by the REU students. This project is jointly funded by the Mathematical Sciences Research Experiences for Undergraduates Sites program and the Established Program to Stimulate Competitive Research program.The theory of modular forms plays an important role in modern number theory, such as Andrew Wiles' proof of Fermat's Last Theorem. In this program, various problems in modular forms will be introduced. These problems will offer a blend of computational investigation with the theoretical pursuit of fundamental problems in modular forms or, more generally, in number theory. The problems are specifically chosen so that the participants will be able to begin investigations almost immediately on computational aspects of the projects, giving them an opportunity to spend the entire time at Clemson working on meaningful research. Potential research projects include but are not limited to studying the distribution of zeros of certain modular forms or period polynomials, investigating properties of higher coefficients of Hecke polynomials, and analyzing traces of Hecke operators on certain types of modular forms. Many of these problems are natural extensions or continuations of the results obtained in the previous REUs. More information can be found at the REU website: https://huixue.people.clemson.edu/REU.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全国各地的八名学生每年将在克莱姆森大学参加为期八周的计算数论研究经验。该计划的目标是通过让学生参与重要而有趣的研究项目,帮助他们在数学研究中获得更高水平的独立性。参与者将被介绍到数论的各种工具、技术和问题,并将研究适合本科工作的重要且通常困难的问题。该计划不仅为参与者提供了在研究领域扩大知识的机会,而且还为参与者提供了成为更好的研究说明者的机会。这将通过学生在课程期间和课程结束时的讲座来完成,其中包括两种不同格式的演讲。pi将组织年度REU会议,使学生能够与该地区其他REU项目的学生互动并向他们学习。会议将为学生提供一个宝贵的机会,在友好的气氛中发表他们的第一次专业演讲,并有助于传播REU学生取得的成果。本项目由“本科生数学科学研究经验”项目和“促进竞争性研究的既定项目”共同资助。模形式理论在现代数论中占有重要地位,如安德鲁·怀尔斯对费马大定理的证明。在这个节目中,将介绍模块化形式的各种问题。这些问题将提供一个混合的计算调查与理论追求的基本问题,在模的形式,或更一般地说,在数论。这些问题是经过特别挑选的,这样参与者就可以几乎立即开始对项目的计算方面进行调查,使他们有机会在克莱姆森的整个时间里从事有意义的研究。潜在的研究项目包括但不限于研究某些模形式或周期多项式的零分布,研究Hecke多项式的高系数性质,分析Hecke算子在某些模形式上的迹线。这些问题中的许多都是前面reu中得到的结果的自然扩展或延续。更多信息可以在REU网站上找到:https://huixue.people.clemson.edu/REU.html.This该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Xue其他文献

Acceptor-Doping Accelerated Charge Separation in Cu2O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies
用于光电化学水分解的 Cu2O 光电阴极受主掺杂加速电荷分离:理论和实验研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Mengmeng Zhang;Jiajun Wang;Hui Xue;Jinfeng Zhang;Shengjie Peng;Xiaopeng Han;Yida Deng;Wenbin Hu
  • 通讯作者:
    Wenbin Hu
Genistein versus ICI 182, 780: An ally or enemy in metastatic progression of prostate cancer
金雀异黄素与 ICI 182、780:前列腺癌转移进展中的盟友或敌人
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hisae Nakamura;Yuwei Wang;Hui Xue;M. Romanish;D. Mager;C. Helgason;Yuzhuo Wang
  • 通讯作者:
    Yuzhuo Wang
Constructing Precise Coordination of Nickel Active Sites on Hierarchical Porous Carbon Framework for Superior Oxygen Reduction
在分级多孔碳框架上构建镍活性位点的精确配位以实现卓越的氧还原
  • DOI:
    10.1002/smll.202102125
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Shuai Zhang;Hui Xue;Wan-lu Li;Jing Sun;Niankun Guo;Tianshan Song;Hongliang Dong;Jiangwei Zhang;Xin Ge;Wei Zhang;Qin Wang
  • 通讯作者:
    Qin Wang
Boosting the electrocatalytic performance of ultrathin NiP2 nanosheets by synergic effect of W and Ru doping engineering
通过W和Ru掺杂工程的协同作用提高超薄NiP2纳米片的电催化性能
  • DOI:
    10.1016/j.apsusc.2020.145302
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ling Qin;TianShan Song;Lei Guo;Keke Huang;Hui Xue;Qin Wang
  • 通讯作者:
    Qin Wang
L1投影的解析计算方法
  • DOI:
    10.13232/j.cnki.jnju.2017.03.012
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xubing Yang;Yifan Gu;Songcan Chen;Hui Xue
  • 通讯作者:
    Hui Xue

Hui Xue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Xue', 18)}}的其他基金

Conference: Southeastern Number Theory Meetings
会议:东南数论会议
  • 批准号:
    2302340
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Southeastern Number Theory Meetings
东南数论会议
  • 批准号:
    1902170
  • 财政年份:
    2019
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Number Theory Meetings in the Southeast
东南部的数论会议
  • 批准号:
    1701290
  • 财政年份:
    2017
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Southeastern Number Theory Meetings
东南数论会议
  • 批准号:
    1502293
  • 财政年份:
    2015
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Southeast Number Theory Meetings
东南数论会议
  • 批准号:
    1303254
  • 财政年份:
    2013
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Palmetto Number Theory Series/SouthEast Regional Meeting On Numbers
棕榈数论系列/东南地区数字会议
  • 批准号:
    1101301
  • 财政年份:
    2011
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
Palmetto Number Theory Series
棕榈数论系列
  • 批准号:
    0901732
  • 财政年份:
    2009
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant

相似国自然基金

新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: ACRES: Advanced Computational Research Experience for Students
REU 网站:ACRES:学生的高级计算研究体验
  • 批准号:
    2349002
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
  • 批准号:
    2348547
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Computational Mathematics for Data Science
REU 网站:数据科学的计算数学
  • 批准号:
    2349534
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
  • 批准号:
    2348984
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
REU Site: Computational Insights into Infectious Disease Evolution, Ecology and Epidemiology
REU 网站:传染病进化、生态学和流行病学的计算见解
  • 批准号:
    2349102
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Genomics and Computational biology
REU 网站:基因组学和计算生物学
  • 批准号:
    2243206
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Computational Modeling Serving Portland
REU 站点:为波特兰服务的计算模型
  • 批准号:
    2244551
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Standard Grant
REU Site: Research Experience for Undergraduates in Applied and Computational Mathematics
REU 网站:应用与计算数学本科生的研究经验
  • 批准号:
    2243772
  • 财政年份:
    2023
  • 资助金额:
    $ 28.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了