Conference: Richmond Geometry Meeting: Geometric Topology and Moduli

会议:里士满几何会议:几何拓扑和模数

基本信息

  • 批准号:
    2349810
  • 负责人:
  • 金额:
    $ 2.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2025-10-31
  • 项目状态:
    未结题

项目摘要

This award supports the Richmond Geometry Meeting: Geometric Topology and Moduli scheduled for August 9-11, 2024, hosted at Virginia Commonwealth University in Richmond, VA. The conference is designed to unite experts in low-dimensional topology and algebraic geometry, spanning diverse career stages and affiliations. Beyond lectures delivered by internationally recognized experts, vertically integrated participation will be fostered by a poster session showcasing the contributions of early-career researchers and a Career and Mentorship Panel. The conference will investigate the intersection of low-dimensional topology, algebraic geometry, and mathematical physics. The roots of this interdisciplinary exploration trace back to Witten's groundbreaking work in the late 1980s and the emergence of the Jones polynomial in Chern-Simons theory. Since then, a landscape of profound connections between knot theory, moduli spaces, and string theory has emerged, due to the collective efforts of generations of mathematicians and physicists. Noteworthy developments include the deep ties between Heegaard Floer homology and the Fukaya category of surfaces, the intricate interplay revealed by Khovanov homology, and the correspondence of Gromov-Witten and Donaldson-Thomas theories. The study of moduli spaces of curves, as exemplified in Heegaard Floer homology, has played a pivotal role in several developments. The preceding three editions of the Richmond Geometry Meeting, encompassing both virtual and in-person gatherings, have showcased a wave of collaborative advancements in knot theory, algebraic geometry, and string theory. Topics such as braid varieties, Khovanov homotopy, link lattice homology, and the GW/DT correspondence in families have been explored, unveiling a nexus of interdependent breakthroughs. This award supports the fourth edition of the Richmond Geometry Meeting, providing a vital platform for the dissemination of the latest findings in this dynamic realm of research. For more information, please visit the Richmond Geometry Meeting website: https://math.vcu.edu/rgmThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持列治文几何会议:计划于2024年8月9日至11日举行的几何拓扑和Moduli,由弗吉尼亚州里士满的弗吉尼亚联邦大学主持。该会议旨在团结低维拓扑和代数几何学的专家,涵盖了各种职业阶段和分支机构。除了国际知名专家的讲座之外,还将通过海报会议来培养垂直整合的参与,展示早期职业研究人员的贡献以及职业和指导小组的贡献。会议将研究低维拓扑,代数几何和数学物理学的交集。这种跨学科探索的根源追溯到1980年代后期的维滕(Witten)开创性的作品以及琼斯(Chern-Simons)理论中琼斯多项式的出现。从那时起,由于几代数学家和物理学家的集体努力,结出结理论,模量空间和弦理论之间的深刻联系的景观。值得注意的发展包括Heegaard Floer同源性与福卡亚类别的表面类别之间的深入联系,Khovanov同源性揭示的复杂相互作用以及Gromov-Witten和Donaldson-Thomas理论的对应关系。 Heegaard浮子同源性的例证曲线模量空间的研究在几个发展中起着关键作用。里士满几何会议的前三个版本涵盖了虚拟和面对面的聚会,它展示了结理论,代数几何和弦理论中的一波协作进步。已经探索了诸如编织品种,Khovanov同型,链接晶格同源性和家庭中的GW/DT对应等主题,并揭示了相互依存的突破的联系。该奖项支持第四版的里士满几何会议,为在这一动态研究领域中传播最新发现提供了至关重要的平台。有关更多信息,请访问Richmond几何会议网站:https://math.vcu.edu/rgmthis Award反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估审查标准来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicola Tarasca其他文献

Geometric cycles on moduli spaces of curves
曲线模空间上的几何循环
  • DOI:
    10.18452/16518
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicola Tarasca
  • 通讯作者:
    Nicola Tarasca
k-canonical divisors through Brill-Noether special points
通过 Brill-Noether 特殊点的 k-正则除数
Du Val curves and the pointed Brill–Noether Theorem
杜瓦尔曲线和尖布里尔-诺特定理
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Farkas;Nicola Tarasca
  • 通讯作者:
    Nicola Tarasca
Brill–Noether loci in codimension two
余维二中的布里尔-诺特基因座
  • DOI:
    10.1112/s0010437x13007215
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Nicola Tarasca
  • 通讯作者:
    Nicola Tarasca
Loci of curves with subcanonical points in low genus
低亏格中具有亚规范点的曲线轨迹
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dawei Chen;Nicola Tarasca
  • 通讯作者:
    Nicola Tarasca

Nicola Tarasca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
  • 批准号:
    2240741
  • 财政年份:
    2023
  • 资助金额:
    $ 2.64万
  • 项目类别:
    Standard Grant
Cranfield University and Richmond Defence Systems Limited KTP 22_23 R4
克兰菲尔德大学和里士满国防系统有限公司 KTP 22_23 R4
  • 批准号:
    10055362
  • 财政年份:
    2023
  • 资助金额:
    $ 2.64万
  • 项目类别:
    Knowledge Transfer Partnership
Aston University and Richmond Design & Marketing Limited
阿斯顿大学和里士满设计
  • 批准号:
    511816
  • 财政年份:
    2020
  • 资助金额:
    $ 2.64万
  • 项目类别:
    Knowledge Transfer Partnership
Richmond Area Mathematical Sciences Conference at Virginia Commonwealth University
弗吉尼亚联邦大学里士满地区数学科学会议
  • 批准号:
    2000033
  • 财政年份:
    2019
  • 资助金额:
    $ 2.64万
  • 项目类别:
    Standard Grant
Graduate Student Support to Attend Magnetics Summer School 2019, To Be Held At Virginia Commonwealth University, Richmond, June 2-7, 2019.
支持研究生参加 2019 年 Magnetics 暑期学校,将于 2019 年 6 月 2 日至 7 日在里士满弗吉尼亚联邦大学举行。
  • 批准号:
    1928471
  • 财政年份:
    2019
  • 资助金额:
    $ 2.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了