Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
基本信息
- 批准号:2349810
- 负责人:
- 金额:$ 2.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports the Richmond Geometry Meeting: Geometric Topology and Moduli scheduled for August 9-11, 2024, hosted at Virginia Commonwealth University in Richmond, VA. The conference is designed to unite experts in low-dimensional topology and algebraic geometry, spanning diverse career stages and affiliations. Beyond lectures delivered by internationally recognized experts, vertically integrated participation will be fostered by a poster session showcasing the contributions of early-career researchers and a Career and Mentorship Panel. The conference will investigate the intersection of low-dimensional topology, algebraic geometry, and mathematical physics. The roots of this interdisciplinary exploration trace back to Witten's groundbreaking work in the late 1980s and the emergence of the Jones polynomial in Chern-Simons theory. Since then, a landscape of profound connections between knot theory, moduli spaces, and string theory has emerged, due to the collective efforts of generations of mathematicians and physicists. Noteworthy developments include the deep ties between Heegaard Floer homology and the Fukaya category of surfaces, the intricate interplay revealed by Khovanov homology, and the correspondence of Gromov-Witten and Donaldson-Thomas theories. The study of moduli spaces of curves, as exemplified in Heegaard Floer homology, has played a pivotal role in several developments. The preceding three editions of the Richmond Geometry Meeting, encompassing both virtual and in-person gatherings, have showcased a wave of collaborative advancements in knot theory, algebraic geometry, and string theory. Topics such as braid varieties, Khovanov homotopy, link lattice homology, and the GW/DT correspondence in families have been explored, unveiling a nexus of interdependent breakthroughs. This award supports the fourth edition of the Richmond Geometry Meeting, providing a vital platform for the dissemination of the latest findings in this dynamic realm of research. For more information, please visit the Richmond Geometry Meeting website: https://math.vcu.edu/rgmThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持里士满几何会议:几何拓扑和模量定于2024年8月9日至11日,在弗吉尼亚州里士满弗吉尼亚联邦大学主办。会议旨在团结低维拓扑和代数几何专家,跨越不同的职业阶段和隶属关系。除了国际公认的专家提供的讲座,垂直整合的参与将通过展示早期职业研究人员和职业和导师小组的贡献海报会议促进。会议将探讨低维拓扑,代数几何和数学物理的交叉。这种跨学科探索的根源可以追溯到维滕在20世纪80年代后期的开创性工作和琼斯多项式在陈-西蒙斯理论中的出现。从那时起,由于几代数学家和物理学家的共同努力,纽结理论、模空间和弦理论之间的深刻联系出现了。值得注意的发展包括Heegaard Floer同调和福谷类曲面之间的深刻联系,Khovanov同调揭示的错综复杂的相互作用,以及Gromov-Witten和Donaldson-Thomas理论的对应关系。曲线的模空间的研究,例如Heegaard Floer同调,在几个发展中发挥了关键作用。里士满几何会议的前三个版本,包括虚拟和面对面的聚会,展示了一波在纽结理论,代数几何和弦理论的合作进步。主题,如辫子品种,Khovanov同伦,链接格同源性,并在家庭的GW/DT对应进行了探讨,揭示了相互依存的突破的关系。该奖项支持里士满几何会议的第四版,为传播这一动态研究领域的最新发现提供了一个重要平台。欲了解更多信息,请访问里士满几何会议网站:https://math.vcu.edu/rgmThis奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Tarasca其他文献
Geometric cycles on moduli spaces of curves
曲线模空间上的几何循环
- DOI:
10.18452/16518 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nicola Tarasca - 通讯作者:
Nicola Tarasca
k-canonical divisors through Brill-Noether special points
通过 Brill-Noether 特殊点的 k-正则除数
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Iulia Gheorghita;Nicola Tarasca - 通讯作者:
Nicola Tarasca
Du Val curves and the pointed Brill–Noether Theorem
杜瓦尔曲线和尖布里尔-诺特定理
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
G. Farkas;Nicola Tarasca - 通讯作者:
Nicola Tarasca
Loci of curves with subcanonical points in low genus
低亏格中具有亚规范点的曲线轨迹
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dawei Chen;Nicola Tarasca - 通讯作者:
Nicola Tarasca
Brill–Noether loci in codimension two
余维二中的布里尔-诺特基因座
- DOI:
10.1112/s0010437x13007215 - 发表时间:
2012 - 期刊:
- 影响因子:1.8
- 作者:
Nicola Tarasca - 通讯作者:
Nicola Tarasca
Nicola Tarasca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
- 批准号:
2240741 - 财政年份:2023
- 资助金额:
$ 2.64万 - 项目类别:
Standard Grant
Cranfield University and Richmond Defence Systems Limited KTP 22_23 R4
克兰菲尔德大学和里士满国防系统有限公司 KTP 22_23 R4
- 批准号:
10055362 - 财政年份:2023
- 资助金额:
$ 2.64万 - 项目类别:
Knowledge Transfer Partnership
Aston University and Richmond Design & Marketing Limited
阿斯顿大学和里士满设计
- 批准号:
511816 - 财政年份:2020
- 资助金额:
$ 2.64万 - 项目类别:
Knowledge Transfer Partnership
Richmond Area Mathematical Sciences Conference at Virginia Commonwealth University
弗吉尼亚联邦大学里士满地区数学科学会议
- 批准号:
2000033 - 财政年份:2019
- 资助金额:
$ 2.64万 - 项目类别:
Standard Grant
Graduate Student Support to Attend Magnetics Summer School 2019, To Be Held At Virginia Commonwealth University, Richmond, June 2-7, 2019.
支持研究生参加 2019 年 Magnetics 暑期学校,将于 2019 年 6 月 2 日至 7 日在里士满弗吉尼亚联邦大学举行。
- 批准号:
1928471 - 财政年份:2019
- 资助金额:
$ 2.64万 - 项目类别:
Standard Grant
RVA Breathes: A Richmond City Collaboration to Reduce Pediatric Asthma Disparities
RVA Breathes:里士满市合作减少小儿哮喘差异
- 批准号:
10229522 - 财政年份:2017
- 资助金额:
$ 2.64万 - 项目类别:
RVA Breathes: A Richmond City Collaboration to Reduce Pediatric Asthma Disparities
RVA Breathes:里士满市合作减少小儿哮喘差异
- 批准号:
10461770 - 财政年份:2017
- 资助金额:
$ 2.64万 - 项目类别:
A Community-Engaged Approach to Reducing Pediatric Asthma Disparities in Richmond
减少里士满儿童哮喘差异的社区参与方法
- 批准号:
9020318 - 财政年份:2015
- 资助金额:
$ 2.64万 - 项目类别:
IPAC'15 - Student and Teacher support - The International Particle Accelerator Conference (IPAC'15) will hold it's Sixth Annual Meeting in Richmond, Virginia, May 3-8, 2015.
IPAC15 - 学生和教师支持 - 国际粒子加速器会议 (IPAC15) 将于 2015 年 5 月 3 日至 8 日在弗吉尼亚州里士满举行第六届年会。
- 批准号:
1534731 - 财政年份:2015
- 资助金额:
$ 2.64万 - 项目类别:
Standard Grant
Partial Support For International Symposium on Cluster and Nanomaterials in Richmond Virginia; October 26-29, 2015
部分支持在弗吉尼亚州里士满举行的团簇和纳米材料国际研讨会;
- 批准号:
1542130 - 财政年份:2015
- 资助金额:
$ 2.64万 - 项目类别:
Standard Grant