Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
基本信息
- 批准号:2350423
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports participation of US based mathematicians in the conference entitled "Moving to higher rank: from hyperbolic to Anosov," which will take place in Centraro, Italy, from July 15- 19, 2024. The conference will bring together researchers and students from the classical field of hyperbolic geometry and the more recent area of higher Teichmuller theory to explore and further develop the rich connection between them. The conference will facilitate the exchange of ideas, and promote collaboration between experts in both fields, while reinforcing cooperation between the US and European mathematical communities. The organizing committee will encourage and support broad and diverse participation, and the training of the new generation of researchers.In recent decades, the areas of hyperbolic geometry and Higher Teichmuller theory have undergone a dynamic convergence of concepts, attracting numerous scholars from hyperbolic geometry who have shifted their focus toward higher rank phenomena. Concurrently, a new generation of researchers has emerged, working at the juncture of these two domains. The conference will focus on how phenomena from hyperbolic geometry generalize to higher Teichmuller theory. Past success along these lines includes generalizations of Fenchel-Nielssen coordinates, Weil- Petersson geometry, Collar Lemmas, Length rigidity, and Patterson-Sullivan Theory. The conference will feature 18 research talks, and two lightening talk sessions for junior researchers. The URL for the conference website is https://tinyurl.com/hyp2anosov.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持我们的数学家参加会议的参与,题为“从2024年7月15日至19日,将在意大利的Centrararo举行。该会议将促进思想的交流,并促进两个领域的专家之间的合作,同时加强美国和欧洲数学社区之间的合作。组织委员会将鼓励和支持广泛而多样化的参与,以及对新一代研究人员的培训。近几十年来,双曲线几何形状和更高的Teichmuller理论领域已经经历了概念的动态融合,吸引了肥压几何学的众多学者,这些学者已将注意力转移到更高的排名现象上。同时,新一代研究人员在这两个领域的关头工作。该会议将重点介绍来自双曲线几何形状的现象如何将其推广到更高的Teichmuller理论。沿着这些线路的过去成功包括Fenchel-Nielssen坐标的概括,Weil-Petersson几何形状,项圈引理,长度刚度和Patterson-Sullivan理论。该会议将进行18次研究演讲,并为初级研究人员举行了两个闪电谈话。会议网站的URL是https://tinyurl.com/hyp2anosov.this奖,反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilesanmi Adeboye其他文献
Entropy rigidity and Hilbert volume
熵刚度和希尔伯特体积
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ilesanmi Adeboye;Harrison Bray;D. Constantine - 通讯作者:
D. Constantine
The area of convex projective surfaces and Fock–Goncharov coordinates
凸射影面的面积和Fock-Goncharov坐标
- DOI:
10.1142/s1793525319500560 - 发表时间:
2015 - 期刊:
- 影响因子:0.8
- 作者:
Ilesanmi Adeboye;D. Cooper - 通讯作者:
D. Cooper
Lower bounds for the volume of hyperbolic $n$-orbifolds
- DOI:
10.2140/pjm.2008.237.1 - 发表时间:
2007-09 - 期刊:
- 影响因子:0
- 作者:
Ilesanmi Adeboye - 通讯作者:
Ilesanmi Adeboye
Ilesanmi Adeboye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向移动边缘网络的高效智能云边端协同调度机制
- 批准号:62302343
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合接地线电流特征分量的矿用移动电缆早期电弧故障感知方法研究
- 批准号:52307155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CXCL14/c-JUN正反馈轴在牙移动中调节牙周膜细胞成骨关键亚群定向迁移和成骨分化的机制研究
- 批准号:82370998
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
孤独症儿童与其父母社会融入主客体互倚作用机制及移动健康管理模式研究
- 批准号:72304096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钙钛矿离子迁移动力学及其在超级电容器中的应用
- 批准号:22373115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Program Verification Methods based on Context-Moving Transformation and Higher-Order Rewriting Theory
基于上下文移动变换和高阶重写理论的程序验证方法
- 批准号:
16K00091 - 财政年份:2016
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher order Unfitted Finite Element Methods for moving domain problems
移动域问题的高阶不拟合有限元方法
- 批准号:
319609890 - 财政年份:2016
- 资助金额:
$ 4万 - 项目类别:
Research Grants
New approach to higher accurate measurement technique of the wall shear stress on moving obstacles by photographic images
通过摄影图像更准确地测量移动障碍物上的壁剪切应力的新方法
- 批准号:
15K13871 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Realizing positive communication system for soft integration of moving vehicle group
实现动车组软集成正向沟通系统
- 批准号:
24500088 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher order auditory neural activities underlying the perception of sound continuity
声音连续性感知背后的高阶听觉神经活动
- 批准号:
23700377 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)