IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data

IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法

基本信息

  • 批准号:
    2400009
  • 负责人:
  • 金额:
    $ 63.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Microbial communities are found almost everywhere on earth and they play important functional roles in the environments that they are found in. Microbes in a community interact with each other as they compete for the food and energy resources available in their environment. These direct and indirect interactions between microbes, termed microbial associations, play a large role in determining the structure, organization, and function of the community. This project addresses the computational challenge of inferring microbial associations from microbiome data generated using high-throughput DNA sequencing technologies. The novel computational tools and resources developed by this project will enable the advancement of knowledge in several disciplines, including environmental sciences, medicine, and human health science. This project will contribute to understanding the rules of life for microbial ecosystems, and it will further our understanding of the important roles that microbes play in biogeochemical processes in the environment and in the progression of microbe-associated diseases. This project will provide interdisciplinary training for graduate students, with an emphasis on training under-represented groups (including women and minorities). This project will also contribute to enabling an increased level of high school student participation in STEM areas through the development of an education module that will introduce high-school teachers, via workshops, to introductory topics in genomics and bioinformatics. Microbial associations can be inferred from the underlying covariance structure that is determined from microbial taxa abundances. These abundances are often estimated from DNA sequence data. However, sequence data are compositional in nature, in the sense that they only provide relative abundance information for taxa, and this poses challenges when determining microbial associations. Furthermore, associations between groups of microbial taxa are not always fixed, and they can change when factors such as resource availability and environmental characteristics vary. This project will develop novel computational methods to determine the number of covariance structures in large microbiome datasets and to reconstruct the sets of microbial associations. These methods will be able to capture both positive and negative microbial associations from sequence data while dealing with the challenges posed by the compositional nature of sequence data. The overall approach is based on a mixture model framework incorporating component distributions that model microbial abundance data. This project will develop variational approximation algorithms to determine the number of covariance structures in a given microbiome dataset, fast numerical optimization algorithms to estimate the parameters of the mixture model, and an integrated framework to incorporate metadata in the analysis. The algorithms will also enable the reconstruction of sparse models, thus handling the scenario when the number of microbial associations in the community is small. The application of these algorithms to analyze large microbiome datasets will generate new insights into microbial ecology of three different environments (human, ocean, and soil). This analysis will include an elucidation of microbial associations at the strain level, the structures of the underlying microbial networks, and the identities of the key taxa in these environments. The results of the project can be found at https://github.com/syooseph/YoosephLab/tree/master/MixtureMicrobialNetworks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微生物群落在地球上几乎无处不在,它们在它们所处的环境中发挥着重要的功能作用。群落中的微生物在竞争环境中可用的食物和能源资源时相互作用。微生物之间的这些直接和间接的相互作用,被称为微生物关联,在决定群落的结构、组织和功能方面起着重要作用。该项目解决了利用高通量DNA测序技术从微生物组数据推断微生物关联的计算挑战。本项目开发的新型计算工具和资源将促进若干学科的知识进步,包括环境科学、医学和人类健康科学。该项目将有助于了解微生物生态系统的生命规律,并将进一步了解微生物在环境中的生物地球化学过程和微生物相关疾病的进展中所起的重要作用。该项目将为研究生提供跨学科培训,重点是培训代表性不足的群体(包括妇女和少数民族)。该项目还将通过开发一个教育模块,通过研讨会向高中教师介绍基因组学和生物信息学的入门主题,从而有助于提高高中生对STEM领域的参与水平。微生物关联可以从微生物类群丰度确定的潜在协方差结构中推断出来。这些丰度通常是根据DNA序列数据估计的。然而,序列数据本质上是组成的,从某种意义上说,它们只能提供分类群的相对丰度信息,这给确定微生物关联带来了挑战。此外,微生物类群之间的关联并不总是固定的,它们可以随着资源可用性和环境特征等因素的变化而变化。该项目将开发新的计算方法来确定大型微生物组数据集中协方差结构的数量,并重建微生物关联集。这些方法将能够从序列数据中捕获正面和负面的微生物关联,同时处理序列数据组成性质带来的挑战。总体方法是基于混合模型框架,其中包含模拟微生物丰度数据的组件分布。该项目将开发变分近似算法来确定给定微生物组数据集中协方差结构的数量,快速数值优化算法来估计混合模型的参数,以及一个集成框架来将元数据纳入分析。该算法还将实现稀疏模型的重建,从而处理群落中微生物关联数量较少的情况。将这些算法应用于分析大型微生物组数据集,将对三种不同环境(人类、海洋和土壤)的微生物生态产生新的见解。该分析将包括菌株水平上的微生物关联的阐明,潜在微生物网络的结构,以及这些环境中关键分类群的身份。该项目的结果可以在https://github.com/syooseph/YoosephLab/tree/master/MixtureMicrobialNetworks.This上找到,该奖项反映了美国国家科学基金会的法定使命,并通过基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shibu Yooseph其他文献

Bidirectional subsethood of shared marker profiles enables accurate virus classification
  • DOI:
    10.1186/s40168-025-02159-x
  • 发表时间:
    2025-07-24
  • 期刊:
  • 影响因子:
    12.700
  • 作者:
    Christopher Riccardi;Yuqiu Wang;Shibu Yooseph;Fengzhu Sun
  • 通讯作者:
    Fengzhu Sun
Foregut microbiome in development of esophageal adenocarcinoma
食管腺癌发生过程中的前肠微生物组
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liying Yang;William E. Oberdorf;Erika A. Gerz;Tamasha Parsons;P. Shah;Sukhleen Bedi;C. Nossa;Stuart M. Brown;Yu Chen;Mengling Liu;M. Poles;F. François;M. Traube;Navjeet Singh;T. DeSantis;G. Andersen;Monika Bihan;Les Foster;A. Tenney;D. Brami;M. Thiagarajan;Indresh Singh;M. Torralba;Shibu Yooseph;Y. Rogers;Eoin L. Brodie;K. Nelson;Zhiheng Pei
  • 通讯作者:
    Zhiheng Pei
Microbial Diversity of the Oceanic Surface Picoplankton: Insights from the Global Ocean Sampling (GOS) Program
海洋表面微型浮游生物的微生物多样性:来自全球海洋采样 (GOS) 计划的见解
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Nealson;Shibu Yooseph
  • 通讯作者:
    Shibu Yooseph
Hybrid tree reconstruction methods
混合树重建方法
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Huson;S. Nettles;K. Rice;T. Warnow;Shibu Yooseph
  • 通讯作者:
    Shibu Yooseph
Combinatorial Problems Arising in SNP and Haplotype Analysis
SNP 和单倍型分析中出现的组合问题
  • DOI:
    10.1007/3-540-45066-1_3
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Halldórsson;V. Bafna;Nathan Edwards;R. Lippert;Shibu Yooseph;S. Istrail
  • 通讯作者:
    S. Istrail

Shibu Yooseph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shibu Yooseph', 18)}}的其他基金

IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data
IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法
  • 批准号:
    2051283
  • 财政年份:
    2021
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Standard Grant
ABI Development: A Novel Protein Fragment Assembler for Metagenomic Data Analysis
ABI 开发:用于宏基因组数据分析的新型蛋白质片段组装器
  • 批准号:
    1262295
  • 财政年份:
    2013
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Continuing Grant

相似海外基金

REU Site: Program for Access to Training in Health Informatics (PATHI)
REU 网站:健康信息学培训计划 (PATHI)
  • 批准号:
    2348793
  • 财政年份:
    2024
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Standard Grant
Travel: IEEE International Conference on Healthcare Informatics (IEEE ICHI 2024) Doctoral Consortium Travel Scholarship
旅行:IEEE 国际医疗信息学会议 (IEEE ICHI 2024) 博士联盟旅行奖学金
  • 批准号:
    2414093
  • 财政年份:
    2024
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Standard Grant
Reliable Tensor-Network Fusion Approach to Medical Informatics: Novel Techniques and Benchmarks
可靠的张量网络融合医学信息学方法:新技术和基准
  • 批准号:
    24K03005
  • 财政年份:
    2024
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
  • 批准号:
    23H01019
  • 财政年份:
    2023
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Travel: NSF Student Travel Grant for 2023 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)
旅行:2023 年 IEEE-EMBS 国际生物医学和健康信息学会议 (BHI) 的 NSF 学生旅行补助金
  • 批准号:
    2331680
  • 财政年份:
    2023
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Standard Grant
CAREER: Transforming Personal Informatics Systems to Support Routine Transitions in Healthy Eating
职业:转变个人信息系统以支持健康饮食的常规转变
  • 批准号:
    2414270
  • 财政年份:
    2023
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Continuing Grant
Pioneering Research of industrial materials informatics for innovative lithium battery anodes
创新锂电池阳极工业材料信息学的开创性研究
  • 批准号:
    23K18465
  • 财政年份:
    2023
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 63.47万
  • 项目类别:
CAREER: Transforming Personal Informatics Systems to Support Routine Transitions in Healthy Eating
职业:转变个人信息系统以支持健康饮食的常规转变
  • 批准号:
    2239727
  • 财政年份:
    2023
  • 资助金额:
    $ 63.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了