Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
基本信息
- 批准号:2401242
- 负责人:
- 金额:$ 26.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research and broader impacts of this award will contribute to current developments in number theory, computer science, and mathematical physics. Computer scientists and mathematicians are interested in the classification and optimal approximation of integral polynomials with real roots. The PI and his Ph.D. student (Bryce Orloski) will prove new (optimal) results and introduce new strategies in this direction. Their methods and algorithms will have applications in mathematical physics (ground states of interacting particle systems) and information theory (error-correcting codes). The PI is passionate and invested in teaching Mathematics to underrepresented minorities. He will use his funding to support his graduate students. The PI will organize a workshop on number theory and convex optimization at Penn State University in the third summer of the grant. The workshop will introduce around 20 advanced graduate students and beginning postdocs to an active area of research and enable them to start their work in this area, particularly in collaboration with each other or senior mathematicians. On a more technical level, understanding the distribution of roots of integral polynomials with real roots sheds light on the distribution of the roots of the zeta function of abelian varieties over finite fields, the distribution of eigenvalues of the adjacency matrices of graphs and the distribution of the eigenvalues of the symmetric integral matrices. The PI and his Ph.D. student (Bryce Orloski) will classify the possible asymptotic distributions of the conjugates of algebraic integers over a given number field. The main goal is to identify the leading exponent of the asymptotic number of algebraic integers with some adelic constraints with the generalized transfinite diameter defined by David Cantor and Robert Rumely. Moreover, they propose a new method since the work of Smyth in 1984 and derive new bounds for the Schur-Siegel-Smyth trace problem by formulating a convex optimization problem in potential theory. They will prove the existence of a unique analytic solution to this optimization problem as the solution to some linear and integral equations. They will develop and implement an efficient algorithm for approximating the optimal solution. Furthermore, physicists have used the linear programming (conformal bootstrap) method to constrain the spectrum of two-dimensional conformal field theories. The PI's project on the optimality of the hexagonal lattice and the extremal values of the first nontrivial eigenvalues of the Laplacian operator will prove new results for these problems and introduce new methods in this direction with applications in Mathematical Physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的研究和更广泛的影响将有助于数论,计算机科学和数学物理的当前发展。具有真实的根的整多项式的分类和最佳逼近是计算机科学家和数学家感兴趣的问题。私家侦探和他的博士学位。学生(Bryce Orloski)将证明新(最佳)结果,并在此方向引入新策略。他们的方法和算法将应用于数学物理(相互作用粒子系统的基态)和信息论(纠错码)。PI充满激情,并投资于向代表性不足的少数民族教授数学。他将用他的资金来支持他的研究生。PI将在拨款的第三个夏天在宾夕法尼亚州立大学组织一个关于数论和凸优化的研讨会。该研讨会将介绍约20名高级研究生和博士后开始研究的活跃领域,使他们能够开始在这一领域的工作,特别是在相互合作或高级数学家。 在一个更技术的水平上,了解整多项式的根的分布与真实的根揭示了分布的zeta函数的交换品种在有限域上的根,分布的特征值的邻接矩阵的图形和对称整矩阵的特征值的分布。私家侦探和他的博士学位。学生(Bryce Orloski)将对给定数域上代数整数共轭的可能渐近分布进行分类。主要目的是在大卫康托和罗伯特鲁莫利定义的广义超限直径下,确定具有某些顶点约束的代数整数的渐近数的首指数.此外,他们提出了一种新的方法,因为史密斯在1984年的工作,并推导出新的界限的舒尔-西格尔-史密斯跟踪问题制定一个凸优化问题的潜在的理论。他们将证明这个优化问题的唯一解析解的存在性,作为一些线性和积分方程的解。他们将开发和实施一种有效的算法来近似最优解。此外,物理学家已经使用线性规划(共形引导)方法来约束二维共形场论的谱。PI关于六边形晶格的最优性和拉普拉斯算子第一非平凡特征值的极值的项目将证明这些问题的新结果,并在数学物理学中应用该方向引入新方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naser Talebizadeh Sardari其他文献
Optimal strong approximation for quadrics over math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msubmrowmi mathvariant="double-struck"F/mi/mrowmrowmiq/mi/mrow/msubmo stretchy="false"[/momit/mimo stretchy="false"]/mo/math
在\(F\)上二次曲面的最优强逼近
- DOI:
10.1016/j.aim.2022.108852 - 发表时间:
2023-01-15 - 期刊:
- 影响因子:1.500
- 作者:
Naser Talebizadeh Sardari;Masoud Zargar - 通讯作者:
Masoud Zargar
Naser Talebizadeh Sardari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naser Talebizadeh Sardari', 18)}}的其他基金
Applications of Number Theory to the Quantum Gates Model
数论在量子门模型中的应用
- 批准号:
2015305 - 财政年份:2019
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
Applications of Number Theory to the Quantum Gates Model
数论在量子门模型中的应用
- 批准号:
1902185 - 财政年份:2019
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
- 批准号:
23K03149 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Standard Grant
CAREER: Tropical to temperate forest dynamics and their potential influences on plant performance strategies, a theory-data fusion approach
职业:热带到温带森林动态及其对植物性能策略的潜在影响,一种理论数据融合方法
- 批准号:
2239483 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Continuing Grant
Breakthrough in the New Formenlehre: On the Musicological Potential of Music Theory and Analysis
新形式的突破:论音乐理论与分析的音乐学潜力
- 批准号:
2884601 - 财政年份:2023
- 资助金额:
$ 26.37万 - 项目类别:
Studentship
The PayCaptain SmartSave: A nudge-theory-based AI-algorithm-driven app to unlock peoples' savings potential and generate financial resilience
PayCaptain SmartSave:一款基于助推理论的人工智能算法驱动的应用程序,可释放人们的储蓄潜力并增强财务弹性
- 批准号:
10032784 - 财政年份:2022
- 资助金额:
$ 26.37万 - 项目类别:
Collaborative R&D
Using Theory- and Data-Driven Neurocomputational Approaches and Digital Phenotyping to Understand RDoC Acute and Potential Threat
使用理论和数据驱动的神经计算方法和数字表型来了解 RDoC 急性和潜在威胁
- 批准号:
10661086 - 财政年份:2022
- 资助金额:
$ 26.37万 - 项目类别:
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2022
- 资助金额:
$ 26.37万 - 项目类别:
Discovery Grants Program - Individual
Using Theory- and Data-Driven Neurocomputational Approaches and Digital Phenotyping to Understand RDoC Acute and Potential Threat
使用理论和数据驱动的神经计算方法和数字表型来了解 RDoC 急性和潜在威胁
- 批准号:
10537200 - 财政年份:2022
- 资助金额:
$ 26.37万 - 项目类别: