Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
基本信息
- 批准号:2401268
- 负责人:
- 金额:$ 17.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent years have witnessed the transition of statistical analysis from a small- or moderate-scale data environment to a world involving massive data on parallel and distributed computing platforms. However, such a transition poses significant statistical and computational challenges for many important methods with non-smooth loss functions. As a representative example, quantile regression methods are building blocks for many advanced methods in statistics and econometrics and are frequently used to model financial data and medical data. The computational inflexibility makes quantile regression less favorable among various branches of the statistical learning tool kit. The project aims to develop a unified framework for large-scale learning with non-smooth loss functions to address the aforementioned problems. The developed methods will be applied to analyze complex biomedical data subject to censoring or privacy protocol and large-scale public health data. Both graduate and undergraduate students will receive training through research involvement in the project, ranging from developing new methods and theory to open-source software under different platforms. The principal investigators will use a combination of tools from statistics, optimization, and probability to develop a unified convolution smoothing framework and establish rigorous theoretical and algorithmic foundations for a class of statistical methods with non-differentiable loss, typified by quantile regression and support vector machine. The former is indispensable for understanding pathways of dependence and heterogeneous effects irretrievable through standard conditional mean regression analysis. However, most existing computational methods for quantile regression are based on generic algorithms, which are not scalable in large-scale machine learning applications when the number of variables is large. Convolution smoothing admits fast calibrated gradient-based algorithms without compromising the estimates' quality, therefore offering a balanced trade-off between statistical accuracy and computational precision. It also extends the applicability of quantile regression, from low to high dimensions, fully to partially observed samples, and linear to nonlinear structures, in modern big data analytics. The first part of the project will focus on three statistical problems: (a) high-dimensional sparse quantile regression, (b) large-scale censored quantile regression, and (c) robust regression with redescending M-estimation. The second part of the research focuses on developing efficient decentralized algorithms for methods with non-smooth loss functions under two modern data types: (i) parallel and distributed data, and (ii) online streaming data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,统计分析从中小规模的数据环境过渡到并行和分布式计算平台上的海量数据世界。然而,这种转变给许多具有非光滑损失函数的重要方法带来了巨大的统计和计算挑战。作为一个有代表性的例子,分位数回归方法是统计学和计量经济学中许多先进方法的基石,经常被用于对金融数据和医学数据进行建模。计算上的不灵活使得分位数回归在统计学习工具包的不同分支中不那么受欢迎。该项目旨在制定一个具有非平稳损失函数的大规模学习的统一框架,以解决上述问题。开发的方法将用于分析受审查或隐私协议约束的复杂生物医学数据和大规模公共卫生数据。研究生和本科生都将通过参与该项目的研究接受培训,范围从开发新方法和理论到在不同平台上开发开源软件。主要研究人员将综合运用统计学、最优化和概率论的工具,建立统一的卷积平滑框架,为以分位数回归和支持向量机为代表的一类具有不可微损失的统计方法建立严密的理论和算法基础。前者对于理解依赖路径和通过标准条件均值回归分析无法挽回的异质效应是必不可少的。然而,现有的大多数分位数回归计算方法都是基于通用算法的,当变量数量很大时,这种算法在大规模机器学习应用中不具有可扩展性。卷积平滑允许快速校准的基于梯度的算法,而不会影响估计的质量,因此提供了统计精度和计算精度之间的平衡。它还扩展了分位数回归的适用范围,从低维到高维,从完全观察到部分观察样本,从线性结构到非线性结构,在现代大数据分析中。该项目的第一部分将侧重于三个统计问题:(A)高维稀疏分位数回归,(B)大规模删失分位数回归,和(C)具有再降M估计的稳健回归。研究的第二部分集中于为两种现代数据类型下的非光滑损失函数方法开发高效的分散算法:(I)并行和分布式数据,以及(Ii)在线流数据。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenxin Zhou其他文献
An expectancy value theory (EVT) based instrument for measuring student perceptions of generative AI
基于期望值理论 (EVT) 的工具,用于测量学生对生成式 AI 的看法
- DOI:
10.1186/s40561-023-00284-4 - 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
C. Chan;Wenxin Zhou - 通讯作者:
Wenxin Zhou
Tuning the Pt-N coordination in Pt/MOFs nanosheets under Nsub2/sub plasma for enhanced oxygen reduction reaction
在氮气等离子体下调节 Pt/MOFs 纳米片的 Pt-N 配位以增强氧还原反应
- DOI:
10.1016/j.jallcom.2023.171915 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:6.300
- 作者:
Yanyan Wang;Wenxin Zhou;Yu Shuai;Tao Zhang;Pingni He;Andong Wu;Shucheng Liu;Yi Liu - 通讯作者:
Yi Liu
Diplomatic Interpreting and Risk Analysis: A Literary Survey
- DOI:
10.32996/ijtis.2022.2.2.2 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
Wenxin Zhou - 通讯作者:
Wenxin Zhou
Habitat radiomics analysis for progression free survival and immune-related adverse reaction prediction in non-small cell lung cancer treated by immunotherapy
- DOI:
10.1186/s12967-024-06057-y - 发表时间:
2025-04-03 - 期刊:
- 影响因子:7.500
- 作者:
Yuemin Wu;Wei Zhang;Xiao Liang;Pengpeng Zhang;Mengzhe Zhang;Yuqin Jiang;Yanan Cui;Yi Chen;Wenxin Zhou;Qi Liang;Jiali Dai;Chen Zhang;Jiali Xu;Jun Li;Tongfu Yu;Zhihong Zhang;Renhua Guo - 通讯作者:
Renhua Guo
Rapid and high-precision cavity-enhanced spectroscopic measurement of HONO and NO<sub>2</sub>: Application to emissions from heavy-duty diesel vehicles in chassis dynamometer tests and in mobile monitoring
- DOI:
10.1016/j.talanta.2024.127386 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:
- 作者:
Meng Wang;Wenyang Liu;Xiang Ding;Tao Liu;Wenxin Zhou;Shengrong Lou;Dean S. Venables;Ravi Varma;Cheng Huang;Jun Chen - 通讯作者:
Jun Chen
Wenxin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenxin Zhou', 18)}}的其他基金
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
- 批准号:
2113409 - 财政年份:2021
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
A Non-Asymptotic Theory of Robustness
鲁棒性的非渐近理论
- 批准号:
1811376 - 财政年份:2018
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
相似国自然基金
智慧物联网中面向终生学习的云边协同智能推理机制研究
- 批准号:2025JJ70513
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于端边云协同的车联网大模型动态推理优化关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于智能推理的无人艇概念设计优化研究
- 批准号:JCZRJQ202500193
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于检索增强生成的低轨卫星网络星地大小协同推理理论研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
通信约束下基于强化学习与行为推理的多智能体集群协同控制方法研究
- 批准号:2025JJ60401
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无人机辅助车联网环境中DNN模型的协同推理与资源配置策略研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
遥感图像元数据协同推理机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向大规模异构边缘网络的智能低碳协同推理机制研究
- 批准号:62301335
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多边缘协同的高清视觉感知数据高效推理方法研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向多深度神经网络计算的云边端协同推理方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:
2311249 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
- 批准号:
2312263 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:
2311251 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 17.31万 - 项目类别:
Standard Grant