Quasimaps to Nakajima Varieties
中岛品种的准地图
基本信息
- 批准号:2401380
- 负责人:
- 金额:$ 24.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Counting curves in a given space is a fundamental problem of enumerative geometry. The origin of this problem can be traced back to quantum physics, and especially string theory, where the curve counting provides transition amplitudes for elementary particles. In this project the PI will study this problem for spaces that arise as Nakajima quiver varieties. These spaces are equipped with internal symmetries encoded in representations of quantum loop groups. Thanks to these symmetries, the enumerative geometry of Nakajima quiver varieties is extremely rich and connected with many areas of mathematics. A better understanding of the enumerative geometry of Nakajima quiver varieties will lead to new results in representation theory, algebraic geometry, number theory, combinatorics and theoretical physics. Many open questions in this field are suitable for graduate research projects and will provide ideal opportunities for students' rapid introduction to many advanced areas of contemporary mathematics. More specifically, this project will investigate and compute the generating functions of quasimaps to Nakajima quiver varieties with various boundary conditions, uncover new dualities between these functions, and prove open conjectures inspired by 3D-mirror symmetry. The project will also reveal new arithmetic properties of the generating functions via the analysis of quantum differential equations over p-adic fields. The main technical tools to be used include the (algebraic) geometry of quasimap moduli spaces, equivariant elliptic cohomology, representation theory of quantum loop groups, and integral representations of solutions of the quantum Knizhnik-Zamolodchikov equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
给定空间中曲线的计数是计数几何的一个基本问题。这个问题的起源可以追溯到量子物理学,特别是弦理论,其中曲线计数为基本粒子提供了跃迁幅度。在这个项目中,PI将研究随着Nakajima颤动变化而出现的空间的这个问题。这些空间配备了以量子环群表示编码的内部对称性。由于这些对称性,中岛箭图簇的计数几何极其丰富,并与许多数学领域联系在一起。更好地理解Nakajima箭图簇的计数几何将在表示论、代数几何、数论、组合学和理论物理中产生新的结果。这一领域的许多开放问题适合研究生研究项目,并将为学生快速介绍当代数学的许多高级领域提供理想的机会。更具体地说,这个项目将研究和计算具有各种边界条件的Nakajima箭图簇的拟映射的生成函数,揭示这些函数之间的新的对偶,并证明由3D镜像对称性启发的开放猜想。该项目还将通过分析p-add场上的量子微分方程来揭示生成函数的新的算术性质。将使用的主要技术工具包括拟映射模空间的(代数)几何、等变椭圆上同调、量子循环群的表示理论以及量子Knizhnik-Zamolodchikov方程的解的积分表示。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrey Smirnov其他文献
Numerical simulation for growing Large-scale and High-quality Zinc germanium phosphide crystals
- DOI:
10.1016/j.jcrysgro.2021.126354 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Shuwei Hao;Hao Fu;Yunfei Shang;Vladimir Artemyev;Andrey Smirnov;Chongqiang Zhu;Zuotao Lei;Lili Zhao;Chunhui Yang - 通讯作者:
Chunhui Yang
Quantum Differential and Difference Equations for $$\textrm{Hilb}^{n}(\mathbb {C}^2)$$
- DOI:
10.1007/s00220-024-05056-w - 发表时间:
2024-07-23 - 期刊:
- 影响因子:2.600
- 作者:
Andrey Smirnov - 通讯作者:
Andrey Smirnov
Impact of migrations on the demographic structures transformation in the Russian North, 1939–2019
- DOI:
10.1111/rsp3.12357 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:
- 作者:
Viktor Fauzer;Tatyana Lytkina;Andrey Smirnov - 通讯作者:
Andrey Smirnov
3d mirror symmetry and quantum emK/em-theory of hypertoric varieties
超环面簇的三维镜面对称与量子 emK/em 理论
- DOI:
10.1016/j.aim.2021.108081 - 发表时间:
2022-02-24 - 期刊:
- 影响因子:1.500
- 作者:
Andrey Smirnov;Zijun Zhou - 通讯作者:
Zijun Zhou
Numerical modelling of Cz-β-Ga2O3 crystal growth in reactive atmosphere
反应气氛中 Cz-β-Ga2O3 晶体生长的数值模拟
- DOI:
10.1016/j.jcrysgro.2024.127594 - 发表时间:
2024 - 期刊:
- 影响因子:1.8
- 作者:
Gagan Kumar Chappa;Vladimir Artemyev;Andrey Smirnov;Detlef Klimm;N. Dropka - 通讯作者:
N. Dropka
Andrey Smirnov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrey Smirnov', 18)}}的其他基金
Dualities in Enumerative Geometry and Representation Theory
枚举几何与表示论中的对偶性
- 批准号:
2054527 - 财政年份:2021
- 资助金额:
$ 24.48万 - 项目类别:
Standard Grant
相似国自然基金
Kronheimer-Nakajima quiver 模空间与有理曲面
- 批准号:11401489
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New experimental approach for yield loci determination using a modified Nakajima setup
使用修改后的 Nakajima 设置确定产量位点的新实验方法
- 批准号:
363839128 - 财政年份:2017
- 资助金额:
$ 24.48万 - 项目类别:
Research Grants
The concept of "Political" and " Social" in interwar Japan: Nakajima Shigeru's political thoght reconsidered
两次世界大战期间日本的“政治”与“社会”概念:中岛茂政治思想的再思考
- 批准号:
16K17063 - 财政年份:2016
- 资助金额:
$ 24.48万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nakajima--Grojnowski operators and derived autoequivalences of Hilbert schemes of points on surfaces
Nakajima--Grojnowski算子和导出的曲面上点的希尔伯特方案的自等价性
- 批准号:
257237495 - 财政年份:2014
- 资助金额:
$ 24.48万 - 项目类别:
Research Fellowships
A study of Nakajima Yuu's Zuishi Jussaku Sonko(随使述作存稿)
中岛悠《醉石十作传功》研究
- 批准号:
17520467 - 财政年份:2005
- 资助金额:
$ 24.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nakajima Shigyoku and the Shoheiko Academy of the 1820's
中岛重玉和 1820 年代的翔平子学园
- 批准号:
07801056 - 财政年份:1995
- 资助金额:
$ 24.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)