RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
基本信息
- 批准号:2401876
- 负责人:
- 金额:$ 19.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Maui wildfire has claimed 97 lives and decimated the historic Lahaina town, with thousands of acres burned and over 2,200 structures damaged or destroyed. However, some structures on the fire path remained unscathed. Current models designed for wildfire spread in wildland-urban-interface (WUI) communities predominantly function at community or larger scales. They fall short in capturing the observations from the Lahaina wildfires, such as specific buildings remaining undamaged amidst extensively destroyed structures. Notably, there exists a group of tools that, in principle, have the capability to simulate fire spread on and between individual structures with high fidelity Computational-Fluid-Dynamics-based (CFD-based) fire models, e.g., the Fire Dynamics Simulator (FDS) developed by NIST and FireFoam developed by FM Global. These tools can potentially be used to both analyze and predict fire spread inside WUI communities and provide deep insights into the resilience of particular structures. However, to date, their application to model fire spread on and between structures in a wildfire has been limited primarily due to the lack of data necessary to correctly set up and validate these high-fidelity models. This project aims to overcome these challenges, enabling more accurate modeling of structure burning and fire spread in WUI settings in the future. This project will also help in training a new generation of researchers in wildfire and WUI fire resilience. The goal of this project is to enhance the WUI fire assessment through compiling a comprehensive dataset that accurately documents how the wildfire spread and impacted the community of Lahaina. It will also assess the feasibility of using high-fidelity CFD-based models to simulate the burning of individual structures in a WUI fire scenario. The comprehensive dataset, pulling from diverse data sources and formats, will be systematically organized, offering a wealth of detailed information in an easily understandable manner. This dataset is crucial for refining WUI fire spread models across all scales, from community-wide fire spread to individual structure response. After the dataset is compiled, high-fidelity CFD models will be set up for two Lahaina structures, one damaged by fire and one undamaged despite being in the path of fire. The aim is to determine if these models can accurately simulate the damage that was observed. By doing so, the project can identify areas where our current understanding and modeling approaches may be lacking or incomplete, guiding the future development of modeling techniques. The dataset and the model feasibility study ultimately will enhance WUI fire risk assessment, driving more informed decision-making in wildfire mitigation strategies. Additionally, both the dataset and the model feasibility study are valuable for broader WUI fire research and practice, including the performance-based design of structures against wildfires using high-fidelity CFD-based models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
毛伊岛野火已夺去97人的生命,摧毁了历史悠久的拉海纳小镇,数千英亩土地被烧毁,2,200多座建筑物受损或被毁。不过,火道上的一些建筑却毫发无损。目前设计的野火蔓延模型在荒地城市界面(WUI)社区主要功能在社区或更大的尺度。他们未能捕捉到拉海纳野火的观测结果,例如在广泛摧毁的结构中,特定的建筑物仍然完好无损。值得注意的是,存在一组工具,其原则上具有利用高保真度基于计算流体动力学(CFD)的火灾模型来模拟火灾在各个结构上和各个结构之间蔓延的能力,例如,NIST开发的火灾动力学模拟器(FDS)和FM Global开发的FireFoam。这些工具可用于分析和预测WUI社区内的火灾蔓延,并深入了解特定结构的弹性。然而,到目前为止,它们在野火中的结构上和结构之间的火灾蔓延模型的应用受到限制,主要是由于缺乏正确建立和验证这些高保真模型所需的数据。该项目旨在克服这些挑战,使未来在WUI环境中更准确地建模结构燃烧和火灾蔓延。该项目还将有助于培训新一代野火和WUI火灾复原力研究人员。该项目的目标是通过编制一个全面的数据集,准确记录野火如何蔓延和影响拉海纳社区,加强WUI火灾评估。它还将评估使用高保真CFD模型来模拟WUI火灾场景中单个结构燃烧的可行性。综合数据集来自不同的数据来源和格式,将系统地组织起来,以易于理解的方式提供丰富的详细信息。该数据集对于完善所有尺度的WUI火灾蔓延模型至关重要,从社区范围的火灾蔓延到个体结构响应。在数据集编译完成后,将为两个拉海纳结构建立高保真CFD模型,一个结构被火灾损坏,另一个结构尽管在火灾路径上但未损坏。目的是确定这些模型是否能够准确地模拟观察到的损坏。通过这样做,该项目可以确定我们目前的理解和建模方法可能缺乏或不完整的领域,指导建模技术的未来发展。该数据集和模型可行性研究最终将增强WUI火灾风险评估,推动野火缓解策略的更明智决策。此外,数据集和模型可行性研究对于更广泛的WUI火灾研究和实践都很有价值,包括使用高保真CFD模型进行基于性能的结构设计以抵御野火。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuna Ni其他文献
Cost–Benefit Analysis of Fire Protection in Buildings: Application of a Present Net Value Approach
- DOI:
10.1007/s10694-023-01419-2 - 发表时间:
2023-05-09 - 期刊:
- 影响因子:2.400
- 作者:
Thomas Gernay;Shuna Ni;David Unobe;Andrea Lucherini;Ranjit Chaudhary;Ruben Van Coile - 通讯作者:
Ruben Van Coile
State of the Art Methodologies for the Estimation of Fire Costs in Buildings to Support Cost–Benefit Analysis
- DOI:
10.1007/s10694-024-01561-5 - 发表时间:
2024-03-24 - 期刊:
- 影响因子:2.400
- 作者:
Ikwulono David Unobe;Andrea Lucherini;Shuna Ni;Thomas Gernay;Ranjit Chaudhary;Ruben Van Coile - 通讯作者:
Ruben Van Coile
Cost-benefit analysis in fire safety engineering: State-of-the-art and reference methodology
- DOI:
10.1016/j.ssci.2023.106326 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Ruben Van Coile;Andrea Lucherini;Ranjit Kumar Chaudhary;Shuna Ni;David Unobe;Thomas Gernay - 通讯作者:
Thomas Gernay
Large language models, physics-based modeling, experimental measurements: the trinity of data-scarce learning of polymer properties
大型语言模型、基于物理的建模、实验测量:聚合物特性的数据稀缺学习的三位一体
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ning Liu;S. Jafarzadeh;B. Lattimer;Shuna Ni;Jim Lua;Yue Yu - 通讯作者:
Yue Yu
Experimental Study of Heat Transfer Through Windows Exposed to a Radiant Panel Heater
- DOI:
10.1007/s10694-024-01685-8 - 发表时间:
2025-01-08 - 期刊:
- 影响因子:2.400
- 作者:
Rebekah L. Schrader;Shuna Ni;Nicholas W. Dow;Joseph M. Willi;Matthew J. DiDomizio;Gavin P. Horn - 通讯作者:
Gavin P. Horn
Shuna Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Proton radiation therapy combined with immunotherapy for enhancing antitumor immune responses in pancreatic cancer murine models.
质子放射治疗与免疫治疗相结合,增强胰腺癌小鼠模型的抗肿瘤免疫反应。
- 批准号:
24K10423 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Post-COVID-19 Multicultural Community Building in Japan: Enhancing Risk Communication and Resilience among Foreign Residents
COVID-19 后日本的多元文化社区建设:加强外国居民的风险沟通和抵御能力
- 批准号:
24K15447 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancing Faculty Well-being at Liberal Arts Colleges: Individual, Contextual, Institutional, and Cultural Factors
提高文理学院教师的福祉:个人、背景、制度和文化因素
- 批准号:
24K06445 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Continuing Grant
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
- 批准号:
2346718 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant