Conference: Dynamical Systems and Fractal Geometry

会议:动力系统和分形几何

基本信息

  • 批准号:
    2402022
  • 负责人:
  • 金额:
    $ 3.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This award provides support for participants to attend the conference “Dynamical Systems and Fractal Geometry” to be held at the University of North Texas from May 14-17, 2024. The primary goal of the conference is to foster interaction and collaboration between researchers in several fields of mathematics: fractal geometry, complex dynamics, thermodynamic formalism, random dynamical systems, and open dynamical systems. These fields are interrelated through both the methods used and in the fundamental questions of their study. The conference will bring together mathematicians from these fields ranging from senior experts to graduate students; experts will give standard 45–50-minute plenary lectures, and students will have the opportunity to give 5-10 minute “lightning talks”. The conference will also include a career panel. More information on the conference, including a list of speakers, can be found on the conference website: https://pcallaart3.wixsite.com/conference. The fields represented in this conference have broad motivations and applications in several classical areas of mathematics and physics beyond dynamical systems and geometry, including number theory, probability theory, and statistical mechanics. Thermodynamic formalism is a framework for unifying many aspects of these fields, and its investigation triggers research and collaboration on the problem of the existence and uniqueness of equilibrium states of the various systems studied in these fields. Limit sets of conformal dynamical systems, and in particular Julia sets arising in complex dynamics, are typically of a fractal nature and understanding their fine fractal properties such as Hausdorff, packing, Assouad and Fourier dimensions provides a true challenge for fractal geometers. The conference aims to advance research in these directions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为参加将于2024年5月14日至17日在北德克萨斯大学举行的“动力系统和分形几何”会议的参与者提供支持。会议的主要目标是促进研究人员在几个数学领域之间的互动和合作:分形几何、复杂动力学、热力学形式主义、随机动力系统和开放动力系统。这些领域通过所使用的方法和研究的基本问题都是相互关联的。会议将汇集来自这些领域的数学家,从资深专家到研究生;专家将进行标准的45 - 50分钟的全体演讲,学生将有机会进行5-10分钟的“闪电演讲”。会议还将包括一个职业小组。有关会议的更多信息,包括发言人名单,可在会议网站上找到:https://pcallaart3.wixsite.com/conference。本次会议所代表的领域在动力系统和几何之外的数学和物理的几个经典领域具有广泛的动机和应用,包括数论、概率论和统计力学。热力学形式主义是统一这些领域许多方面的一个框架,它的研究引发了对这些领域所研究的各种系统平衡态的存在性和唯一性问题的研究和合作。共形动力系统的极限集,特别是复杂动力学中的Julia集,具有典型的分形性质,理解它们的精细分形特性,如Hausdorff、packing、Assouad和Fourier维数,对分形几何学者来说是一个真正的挑战。这次会议旨在推动这些方向的研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pieter Allaart其他文献

Moments of the Mean of Dubins–Freedman Random Probability Distributions

Pieter Allaart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Conference: Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2243027
  • 财政年份:
    2023
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Conference: Dynamical Systems in the Life Sciences. Satellite Workshop of the 2023 Annual SMB Meeting
会议:生命科学中的动力系统。
  • 批准号:
    2310816
  • 财政年份:
    2023
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Conference: Fall 2023 Mathematics Conference: Differential Equations and Dynamical Systems and Applications
会议:2023 年秋季数学会议:微分方程和动力系统及应用
  • 批准号:
    2317068
  • 财政年份:
    2023
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Travel Grant: Conference on New Frontiers in Networked Dynamical Systems: Assured Learning, Communication, and Control
差旅补助金:网络动态系统新领域会议:有保证的学习、通信和控制
  • 批准号:
    2335461
  • 财政年份:
    2023
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Conference: Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
会议:宾夕法尼亚州立大学动态系统及相关主题半年度研讨会
  • 批准号:
    2230142
  • 财政年份:
    2022
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Conference: Flexibility and Rigidity in Dynamical Systems
会议:动力系统的灵活性和刚性
  • 批准号:
    2154392
  • 财政年份:
    2022
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Seventh Annual KUMUNU-ISU Conference in Partial Differential Equations, Dynamical Systems, and Applications
第七届 KUMUNU-ISU 偏微分方程、动力系统和应用年度会议
  • 批准号:
    2230000
  • 财政年份:
    2022
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了