Inverse Optimization for Imputing Constraints in Mathematical Programs
数学程序中输入约束的逆优化
基本信息
- 批准号:2402419
- 负责人:
- 金额:$ 38.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
While forward optimization methods seek to calculate the optimal values of decision variables for given values of model parameters, the goal of inverse optimization is to infer parameters that render given values of decision variables optimal, i.e., prescribing needed actions or inputs to achieve an optimal result. This grant will contribute to the advancement of national health, prosperity, and welfare by developing a computational framework to efficiently solve a large class of inverse optimization models. The methodology will be applied to system identification problems in cancer radiotherapy to help validate current treatment protocols. The PI will mentor doctoral students on this research topic throughout the project. Results will be incorporated into a graduate-level course and two new books that the PI is drafting, as well as workshops and seminars on applications of optimization for underrepresented students in STEM. The current inverse optimization literature focuses almost entirely on imputing objective function parameters. There has been little work on imputing constraint parameters because these inverse optimization models are nonconvex, bilinear and hence difficult to solve. The project will pursue two approaches to solve these models: (1) conversion into equivalent convex problems via a variable transformation, if possible; and (2) a suite of tailored approximation algorithms that solve a sequence of convex problems, if not. The researched methods will be evaluated computationally against classic branch-and-bound algorithms using several publicly available data sets, together with an in-depth case study in cancer radiotherapy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正向优化方法寻求计算给定模型参数值的决策变量的最优值,而逆优化的目标是推断使给定决策变量值最优的参数,即规定所需的动作或输入以达到最优结果。这项拨款将通过开发一个计算框架来有效地解决一大类逆优化模型,为促进国家健康、繁荣和福利做出贡献。该方法将应用于癌症放疗的系统识别问题,以帮助验证当前的治疗方案。PI将在整个项目中指导博士生进行该研究课题。研究结果将纳入研究生水平的课程和PI正在起草的两本新书,以及针对STEM中代表性不足的学生的优化应用的讲习班和研讨会。目前的逆优化文献几乎全部集中在目标函数参数的输入上。由于这些逆优化模型是非凸的、双线性的,求解困难,因此对约束参数的输入研究很少。该项目将采用两种方法来解决这些模型:(1)如果可能的话,通过变量变换将其转换为等效凸问题;(2)一套定制的近似算法,解决一系列凸问题,如果没有。研究方法将使用几个公开可用的数据集对经典的分支定界算法进行计算评估,并对癌症放疗进行深入的案例研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Archis Ghate其他文献
Robust continuous linear programs
- DOI:
10.1007/s11590-020-01539-6 - 发表时间:
2020-02-03 - 期刊:
- 影响因子:1.100
- 作者:
Archis Ghate - 通讯作者:
Archis Ghate
Percentile optimization in multi-armed bandit problems
- DOI:
10.1007/s10479-024-06165-4 - 发表时间:
2024-07-19 - 期刊:
- 影响因子:4.500
- 作者:
Zahra Ghatrani;Archis Ghate - 通讯作者:
Archis Ghate
Archis Ghate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Archis Ghate', 18)}}的其他基金
Inverse Optimization for Imputing Constraints in Mathematical Programs
数学程序中输入约束的逆优化
- 批准号:
2153155 - 财政年份:2022
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
Countably Infinite Monotropic Programs
可数无限单向程序
- 批准号:
1561918 - 财政年份:2016
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
CAREER: Stochastic Control for Adaptive Biologically Conformal Radiotherapy
职业:自适应生物适形放射治疗的随机控制
- 批准号:
1054026 - 财政年份:2011
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
Collaborative Research : Approximate Fictitious Play for the Optimization of Complex Systems
协作研究:复杂系统优化的近似虚拟游戏
- 批准号:
0830380 - 财政年份:2008
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Continuing Grant
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 38.48万 - 项目类别:
Continuing Grant