CAREER: Human-Inspired Multi-Robot Navigation
职业:受人类启发的多机器人导航
基本信息
- 批准号:2402338
- 负责人:
- 金额:$ 50.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Indoor mobile robots are increasingly becoming a part of our lives. Whether there are Roombas cleaning the floor or Kiva robots delivering parts in warehouses, the robots should be able to avoid collisions while successfully completing their tasks. However, despite the maturity of existing motion planning techniques and the recent rise of learning and big data techniques, mobile robots still lack the decision making ability of humans. This Faculty Early Career Development (CAREER) project will develop techniques for efficient and socially intelligent multi-robot navigation, shaping the next generation of mobile robots that can reason about how their actions influence the other agents present in the scene and act accordingly, much like humans do. The resulting advances will facilitate the successful deployment of "thinking" mobile robots that can be seamlessly integrated into our homes and workspaces. This research spans across different areas, including motion planning, machine learning, and reinforcement learning. With its interdisciplinary nature and relevance for modern technologies, it is ideal for inspiring the next generation of students and exposing the broader community to STEM areas couched in progressive applications in robotics and AI. The project includes integrated educational, research, and outreach activities for K-12, undergraduate, and graduate students, promoting a high level of participation by women and underrepresented minorities, and developing new courses and updated curricula related to robotics.This project will introduce a human-inspired paradigm shift in the design of multi-robot navigation algorithms. Humans know when they have to be polite and yield to others and when to take decisive actions, efficiently performing complex navigation tasks without collisions. The objective of this project is to enable such behavior on mobile robots by leveraging publicly available human-human interaction data and our own human-robot interaction experiments along with coupling motion planning with learning techniques. Specifically, the project will focus on two two inter-related research thrusts that will lead to i) new algorithms that take advantage of human trajectory datasets to learn what controls humans take in different interaction scenarios; ii) new approaches that enhance existing local navigation planners with the learned controls to enable human-like decision making; iii) a reinforcement learning framework for multi-robot navigation that generalizes robot navigation policies to unknown interactions scenarios; iv) new datasets involving interactions between humans and robots, and subsequently v) new algorithms for multi-robot navigation in human-populated environments. This work will be evaluated both in simulation and on real robots, and related algorithms and datasets will be made publicly available to facilitate further research and exploration by the robotics and AI community. If successful, this project will shape the next generation of indoor mobile robots that can enrich our quality of life and work, and has the potential to significantly benefit society through its integrated education plan.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE). This project is jointly funded by CISE/IIS, the Established Program to Stimulate Competitive Research (EPSCoR), and ENG/CMMI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
室内移动的机器人正日益成为我们生活的一部分。无论是清洁地板的Roombas还是在仓库中运送零件的Kiva机器人,机器人都应该能够在成功完成任务的同时避免碰撞。然而,尽管现有的运动规划技术已经成熟,学习和大数据技术也在最近兴起,但移动的机器人仍然缺乏人类的决策能力。这个教师早期职业发展(CAREER)项目将开发高效和社会智能多机器人导航的技术,塑造下一代移动的机器人,这些机器人可以推理他们的行为如何影响场景中的其他代理并相应地采取行动,就像人类一样。由此产生的进步将促进“思考”移动的机器人的成功部署,这些机器人可以无缝地集成到我们的家庭和家庭中。这项研究跨越了不同的领域,包括运动规划、机器学习和强化学习。凭借其跨学科的性质和现代技术的相关性,它非常适合激励下一代学生,并将更广泛的社区暴露在机器人和人工智能的渐进应用中。该项目包括针对K-12、本科生和研究生的综合教育、研究和推广活动,促进妇女和代表性不足的少数民族的高水平参与,开发与机器人技术相关的新课程和更新课程。该项目将在多机器人导航算法的设计中引入人类启发的范式转变。人类知道什么时候必须礼貌和屈服于他人,什么时候采取果断行动,有效地执行复杂的导航任务,而不会发生碰撞。这个项目的目标是使这种行为的移动的机器人利用公开的人与人的交互数据和我们自己的人与机器人的交互实验沿着与耦合运动规划与学习技术。具体来说,该项目将专注于两个相互关联的研究方向,这将导致i)利用人类轨迹数据集的新算法,以了解人类在不同的交互场景中采取的控制措施; ii)利用学习到的控制措施增强现有本地导航规划人员的新方法,以实现类似人类的决策; iii)用于多机器人导航的强化学习框架,其将机器人导航策略推广到未知交互场景; iv)涉及人类和机器人之间交互的新数据集,以及随后的v)人类环境中多机器人导航的新算法。这项工作将在模拟和真实的机器人上进行评估,相关算法和数据集将公开,以促进机器人和人工智能社区的进一步研究和探索。如果成功,该项目将塑造下一代室内移动的机器人,可以丰富我们的生活和工作质量,并有可能通过其综合教育计划显着造福社会。该项目由跨董事会机器人基础研究计划支持,由工程局(ENG)和计算机和信息科学与工程局(CISE)共同管理和资助。该项目由CISE/IIS、激励竞争研究的既定计划(EPSCoR)和ENG/CMMI共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioannis Karamouzas其他文献
Guide to Anticipatory Collision Avoidance
预期防撞指南
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Guy;Ioannis Karamouzas - 通讯作者:
Ioannis Karamouzas
Exploiting Motion Capture to Enhance Avoidance Behaviour in Games
利用动作捕捉来增强游戏中的回避行为
- DOI:
10.1007/978-3-642-10347-6_3 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
B. V. Basten;Sander E. M. Jansen;Ioannis Karamouzas - 通讯作者:
Ioannis Karamouzas
C-OPT: Coverage-Aware Trajectory Optimization Under Uncertainty
C-OPT:不确定性下的覆盖感知轨迹优化
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:5.2
- 作者:
Bobby Davis;Ioannis Karamouzas;S. Guy - 通讯作者:
S. Guy
Uncertainty Models for TTC-Based Collision-Avoidance
基于 TTC 的碰撞避免的不确定性模型
- DOI:
10.15607/rss.2017.xiii.002 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zahra Forootaninia;Ioannis Karamouzas;Rahul Narain - 通讯作者:
Rahul Narain
Adding variation to path planning
为路径规划添加变化
- DOI:
10.1002/cav.242 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ioannis Karamouzas;M. Overmars - 通讯作者:
M. Overmars
Ioannis Karamouzas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioannis Karamouzas', 18)}}的其他基金
CAREER: Human-Inspired Multi-Robot Navigation
职业:受人类启发的多机器人导航
- 批准号:
2047632 - 财政年份:2021
- 资助金额:
$ 50.18万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: Human-Inspired Robotic Assistance to Prevent Slip-Induced Falls
ERI:仿人机器人协助防止滑倒引起的跌倒
- 批准号:
2301816 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant
Novel Human-Inspired Stability and Robustness Concepts for Human-Centred Robots and Biomedical Devices
以人为中心的机器人和生物医学设备的新颖的受人启发的稳定性和鲁棒性概念
- 批准号:
RGPIN-2022-05162 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
Discovery Grants Program - Individual
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Human-Inspired Multi-Robot Navigation
职业:受人类启发的多机器人导航
- 批准号:
2047632 - 财政年份:2021
- 资助金额:
$ 50.18万 - 项目类别:
Continuing Grant
Cryo-EM inspired drug discovery to treat human fungal pathogenic infections
冷冻电镜启发了治疗人类真菌病原感染的药物发现
- 批准号:
nhmrc : 2003946 - 财政年份:2021
- 资助金额:
$ 50.18万 - 项目类别:
Ideas Grants
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2021
- 资助金额:
$ 50.18万 - 项目类别:
Discovery Grants Program - Individual
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2020
- 资助金额:
$ 50.18万 - 项目类别:
Discovery Grants Program - Individual
NSF2026: EAGER: An Ecologically Inspired Human-Machine Intelligence Approach to Recognizing Similitude in Multi-Scale Watershed Research
NSF2026:EAGER:一种受生态启发的人机智能方法,用于识别多尺度流域研究中的相似性
- 批准号:
2033995 - 财政年份:2020
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant
MAN^3: huMAN-inspired robotic MANipulation for advanced MANufacturing
MAN^3:受 huMAN 启发的机器人操作,用于先进制造
- 批准号:
EP/S00453X/1 - 财政年份:2019
- 资助金额:
$ 50.18万 - 项目类别:
Research Grant
Bio-inspired Exoskeletons and Safety in Human-Exoskeleton Cooperation
仿生外骨骼与人外骨骼合作的安全性
- 批准号:
1915872 - 财政年份:2019
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant