Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs

合作研究:CIF-Medium:图上的隐私保护机器学习

基本信息

  • 批准号:
    2402817
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Graph-structured data captures intricate interactions between diverse agents, and is widespread in various scientific and engineering applications such as communication theory and computer science, medical research, computational biology, and social sciences. In many scenarios, graph information is sensitive and has to be kept private. Additionally, it often necessitates updates to accommodate changes in permissions, leading to the need to retrain sophisticated large-scale machine learning models from the ground up. To simultaneously ensure that the data is kept private and easily removable without complete relearning, and that its utility for making inference and predictions remains uncompromised, innovative, and efficient privacy-preserving machine learning algorithms for graph data are essential. In addition to establishing a framework for novel graph-learning method development, the project will also provide unique cross-disciplinary training opportunities for students in biological, physics, and financial graph data analysis; broaden the participation of women and other under-represented groups in STEM research via targeted recruiting and specialized student exchange programs; and, in the process, establish new collaborations among various machine learning, data acquisition and modeling centers/institutes housed at the participating institutions.This project aims to address fundamental challenges in designing privacy-preserving and efficiently updatable graph neural network models by leveraging interdisciplinary techniques from machine learning, data security, information theory, theoretical computer science and statistics. The main difficulties encountered are that (i) the graph attributes and topology are heterogeneous, yet highly correlated data types; (ii) privatization reduces utility; (iii) inference attacks that aim to determine how much information is leaking for sub-optimally privatized graph learners are generally unreliable. To resolve these issues, the team will devise novel non-uniform privatization protocols that trade accuracy for varied degrees of privacy protection; implement provably efficient methods to remove graph information from graph neural network models without retraining; and in, the process, implement a new cohort of membership inference approaches that can accurately measure information retention and leakage of machine learning models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图结构数据捕获不同代理之间的复杂交互,并广泛应用于各种科学和工程应用,如通信理论和计算机科学,医学研究,计算生物学和社会科学。在许多情况下,图形信息是敏感的,必须保持私有。此外,它通常需要更新以适应权限的变化,从而需要从头开始重新训练复杂的大规模机器学习模型。为了同时确保数据保持私密性,并且在不完全重新学习的情况下可以轻松删除,并且其用于进行推理和预测的实用性仍然不受影响,用于图形数据的创新和高效的隐私保护机器学习算法至关重要。除了建立一个新的图形学习方法开发框架外,该项目还将为生物学,物理学和金融图形数据分析的学生提供独特的跨学科培训机会;通过有针对性的招聘和专业学生交流计划,扩大妇女和其他代表性不足的群体在STEM研究中的参与;在这个过程中,在各种机器学习之间建立新的合作,位于参与机构的数据采集和建模中心/研究所。该项目旨在解决隐私设计中的根本挑战-通过利用机器学习、数据安全、信息理论、理论计算机科学和统计学等跨学科技术,保存和有效更新图神经网络模型。遇到的主要困难是:(i)图的属性和拓扑结构是异构的,但高度相关的数据类型;(ii)私有化降低了效用;(iii)推理攻击,旨在确定有多少信息泄漏次优私有化图学习者一般是不可靠的。为了解决这些问题,该团队将设计新颖的非统一私有化协议,以不同程度的隐私保护来换取准确性;实施可证明有效的方法来从图神经网络模型中删除图信息,而无需重新训练;在这个过程中,实现了一组新的成员推理方法,可以准确地测量机器学习模型的信息保留和泄漏。该奖项反映了NSF的基金会的使命是履行其法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamalika Chaudhuri其他文献

Privacy Amplification by Subsampling in Time Domain
通过时域二次采样实现隐私放大
Online Bipartite Perfect Matching With Augmentations
在线二分完美匹配与增强
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamalika Chaudhuri;C. Daskalakis;Robert D. Kleinberg;Henry Lin
  • 通讯作者:
    Henry Lin
Profile-based Privacy for Locally Private Computations
用于本地私有计算的基于配置文件的隐私
Agnostic Multi-Group Active Learning
不可知多组主动学习
  • DOI:
    10.48550/arxiv.2306.01922
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nick Rittler;Kamalika Chaudhuri
  • 通讯作者:
    Kamalika Chaudhuri
Learning to blame: localizing novice type errors with data-driven diagnosis
学会责备:通过数据驱动的诊断来定位新手类型错误
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric L. Seidel;Huma Sibghat;Kamalika Chaudhuri;Westley Weimer;Ranjit Jhala
  • 通讯作者:
    Ranjit Jhala

Kamalika Chaudhuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamalika Chaudhuri', 18)}}的其他基金

SaTC: CORE: Small: Robust and Private Federated Analytics on Networked Data
SaTC:核心:小型:网络数据的稳健且私密的联合分析
  • 批准号:
    2241100
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804829
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CCF: CIF: Small: Interactive Learning from Noisy, Heterogeneous Feedback
CCF:CIF:小型:从嘈杂、异构的反馈中进行交互式学习
  • 批准号:
    1719133
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: New Directions in Spectral Learning with Applications to Comparative Epigenomics
RI:小型:协作研究:光谱学习的新方向及其在比较表观基因组学中的应用
  • 批准号:
    1617157
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Differentially-Private Machine Learning with Applications to Biomedical Informatics
职业:差分隐私机器学习及其在生物医学信息学中的应用
  • 批准号:
    1253942
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

复杂电子产品超精密加工及检测关键技术研究与应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了