New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons

合成原子级精确石墨烯纳米带的新策略

基本信息

  • 批准号:
    2403736
  • 负责人:
  • 金额:
    $ 55.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

With the support of the Macromolecular, Supramolecular and Nanochemistry (MSN) program in the Division of Chemistry, Professor Guangbin Dong at the University of Chicago is developing efficient and scalable synthetic approaches for preparing atomically precise graphene nanoribbons (GNRs). These nanoribbons are exquisitely thin strips of graphene: a sheet of carbon atoms arranged in a rigid structure that resembles chicken wire. Graphene nanoribbons have emerged as attractive organic materials for potential applications in high speed, lightweight, flexible electronic, and spintronic devices. In this project, physical organic chemistry knowledge will be combined with advanced tools of transition metal catalysis to develop efficient strategies for making these interesting materials. If successful, the research will address a long-standing challenge of preparing narrow zig-zag graphene nanoribbons for studying their physical, electronical, optical, and magnetic properties. The research team will also be actively engaged in the Chicago Pre-College Science & Engineering Program (ChiS&E) to provide early chemistry education to Chicago public middle-school students, the Collegiate Scholars Program to teach high school students, and the Leadership Alliance Summer Research Early Identification Program (SR-EIP) to offer lab research experience to undergraduate students. Integration of the project with these outreach activities has the potential to greatly encourage diverse and students from underrepresented groups to explore careers in science and engineering while learning and actively contributing to research.The research project will focus on the development of efficient and scalable synthetic approaches towards atomically precise and narrow N=3-5 zigzag graphene nanoribbons (zGNRs). The preparation and fabrication in liquid phase of well-defined pristine zGNRs are very challenging and underdeveloped. To overcome these unmet challenges, stepwise cyclodehydrogenation approaches to access zGNRs from their more stable oxidized or reduced precursor ribbons will be devised. The novel monomer synthesis, on the other hand, will be explored using palladium/norbornene catalysis. Compared to the existing approaches for GNR synthesis, the merits of the new strategies have the potential to be quite significant: (i) monomers will be prepared in a streamlined manner from commercially available starting materials; (ii) the syntheses will be scalable by using in solution polymerization; (iii) air sensitive intermediates will be circumvented, easing the material transfer process; (iv) aryl−aryl cleavage defects are to be minimized by avoiding labile m-xylene-type units. The knowledge gained from this project has the potential to advance the understanding of these graphene-like quasi-one-dimensional polymers, which in turn will further stimulate the development of other new conjugated organic semiconducting materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系大分子、超分子和纳米化学(MSN)项目的支持下,芝加哥大学董光斌教授正在开发高效且可扩展的合成方法来制备原子级精确的石墨烯纳米带(GNR)。 这些纳米带是非常薄的石墨烯条:一片碳原子排列成类似铁丝网的刚性结构。 石墨烯纳米带已经成为具有吸引力的有机材料,在高速、轻质、柔性电子和自旋电子器件中具有潜在的应用。 在这个项目中,物理有机化学知识将与过渡金属催化的先进工具相结合,以开发制造这些有趣材料的有效策略。 如果成功,该研究将解决长期存在的制备窄锯齿形石墨烯纳米带的挑战,以研究其物理,电子,光学和磁性。 该研究团队还将积极参与芝加哥大学预科科学工程计划(ChiS E),为芝加哥公立中学学生提供早期化学教育,大学学者计划教授高中生,以及领导联盟夏季研究早期识别计划(SR-EIP),为本科生提供实验室研究经验。该项目与这些推广活动的整合有可能极大地鼓励来自代表性不足群体的多样化和学生探索科学和工程职业,同时学习并积极为研究做出贡献。该研究项目将专注于开发高效和可扩展的合成方法,以实现原子精确和窄N=3-5锯齿形石墨烯纳米带(zGNRs)。 在液相中制备和制造定义明确的原始zGNRs是非常具有挑战性的和欠发达的。 为了克服这些未满足的挑战,将设计逐步环化脱氢方法以从其更稳定的氧化或还原的前体条带获得zGNR。 新的单体合成,另一方面,将探索使用钯/环己烯催化。 与现有的GNR合成方法相比,新策略的优点可能相当显着:(i)将以简化的方式从市售起始材料制备单体;(ii)合成将可通过使用溶液聚合来扩展;(iii)将避免空气敏感中间体,简化材料转移过程;(iv)通过避免不稳定的间二甲苯型单元来最小化芳基-芳基裂解缺陷。 从该项目中获得的知识有可能促进对这些石墨烯类准一维聚合物的理解,从而进一步刺激其他新型共轭有机半导体材料的开发。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guangbin Dong其他文献

Cu(I)-Catalyzed Chemoselective Coupling of Cyclopropanols with Diazo Esters: Ring-Opening C-C Bond Formations
Cu(I) 催化环丙醇与重氮酯的化学选择性偶联:开环 C-C 键形成
  • DOI:
    10.1002/anie.201612138
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Zhang;Guojiao Wu;Heng Yi;Tong Sun;Bo Wang;Yan Zhang;Guangbin Dong;Jianbo Wang
  • 通讯作者:
    Jianbo Wang
Programmable Ether Synthesis Enabled by Oxa-Matteson Reaction.
通过 Oxa-Matteson 反应实现可编程醚合成。
An unusual oxidant-free transfer dehydrogenation of carboxylic acids
  • DOI:
    10.1016/j.trechm.2024.08.007
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yin Xu;Rui Zhang;Bo Zhou;Guangbin Dong
  • 通讯作者:
    Guangbin Dong
ISW (Improved Super-Elastic Ti-Ni Alloy Wire) for Non-extraction Treatment of Adult Case with Linguoversion of Bilateral Lower Second Premolars
ISW(改良超弹性钛镍合金丝)非拔牙治疗成人双侧下第二前磨牙舌侧翻病例
  • DOI:
    10.30036/tjo.201012.0003
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guangbin Dong;Yuan;Jian;Hsien
  • 通讯作者:
    Hsien
Synthesis of alkenyl boronates through stereoselective vinylene homologation of organoboronates
通过有机硼酸酯的立体选择性亚乙烯基同系化合成烯基硼酸酯
  • DOI:
    10.1038/s44160-023-00461-w
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miao Chen;Thomas H. Tugwell;Peng Liu;Guangbin Dong
  • 通讯作者:
    Guangbin Dong

Guangbin Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guangbin Dong', 18)}}的其他基金

Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
使用简单烯烃进行酮烷基化:一种可持续的化学方法
  • 批准号:
    2154632
  • 财政年份:
    2022
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
New Strategy for Synthesis of Atomically-Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2002912
  • 财政年份:
    2020
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
使用简单烯烃进行酮烷基化:一种可持续的化学方法
  • 批准号:
    1855556
  • 财政年份:
    2019
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    1707399
  • 财政年份:
    2017
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
SusChEM: CAREER: Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
SusChEM:职业:使用简单烯烃的酮烷基化:一种可持续的化学方法
  • 批准号:
    1737790
  • 财政年份:
    2016
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
SusChEM: CAREER: Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
SusChEM:职业:使用简单烯烃的酮烷基化:一种可持续的化学方法
  • 批准号:
    1254935
  • 财政年份:
    2013
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Trojan Horse strategy的新型药物递呈系统在肝癌射频消融中的应用
  • 批准号:
    LQ19H160021
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Strategy I植物的铁元素吸收代谢分子调控机制研究
  • 批准号:
    30530460
  • 批准年份:
    2005
  • 资助金额:
    140.0 万元
  • 项目类别:
    重点项目

相似海外基金

New Strategy for Green Synthesis and Conversion of Nitrogen-Containing Compounds Using Function Integrated Heterogeneous Catalysts
功能集成多相催化剂绿色合成与转化含氮化合物的新策略
  • 批准号:
    22H00270
  • 财政年份:
    2022
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
New Strategy for Synthesis of Atomically-Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2002912
  • 财政年份:
    2020
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
A new strategy for the synthesis of heavier multiply bonded compounds utilizing the cavity of calix[4]arene
利用杯[4]芳烃空腔合成较重多键化合物的新策略
  • 批准号:
    20K15265
  • 财政年份:
    2020
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of the Asymmetric Cycloisomerization Reaction to Directly Provide Nitrogen-containing Spiro Cyclic Products : New Strategy for the Synthesis of Alkaloids
开发不对称环异构化反应直接提供含氮螺环产物:生物碱合成新策略
  • 批准号:
    19K05461
  • 财政年份:
    2019
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of strategy toward the unified total synthesis of natural and artificial daphnan/tigrian diterpenoids and discovery of new functional molecules
天然和人工瑞香/虎香二萜统一全合成策略的制定和新功能分子的发现
  • 批准号:
    19K15554
  • 财政年份:
    2019
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A new, catalytic strategy for piperidine syntheses and a unified approach to the synthesis of sparteine alkaloids
哌啶合成的新催化策略和金雀花生物碱合成的统一方法
  • 批准号:
    1949469
  • 财政年份:
    2017
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Studentship
Photocatalytic Reductive Coupling of Iminiums: New Umpolung Strategy for Tertiary Amine Synthesis
亚胺的光催化还原偶联:叔胺合成的新 Umpolung 策略
  • 批准号:
    1923532
  • 财政年份:
    2017
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Studentship
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    1707399
  • 财政年份:
    2017
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
Nanostructure Synthesis at the Liquid-Substrate Interface: A New Strategy for Obtaining Plasmonic and Chemically Active Surfaces
液体-基质界面纳米结构合成:获得等离激元和化学活性表面的新策略
  • 批准号:
    1707593
  • 财政年份:
    2016
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
Nanostructure Synthesis at the Liquid-Substrate Interface: A New Strategy for Obtaining Plasmonic and Chemically Active Surfaces
液体-基质界面纳米结构合成:获得等离激元和化学活性表面的新策略
  • 批准号:
    1505114
  • 财政年份:
    2015
  • 资助金额:
    $ 55.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了