CyberTraining: Implementation: Small: Building Future Research Workforce in Trustworthy Artificial Intelligence (AI)
网络培训:实施:小型:建立可信赖人工智能 (AI) 领域的未来研究队伍
基本信息
- 批准号:2413654
- 负责人:
- 金额:$ 49.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of the project is to train current and future research workforce members in trustworthy artificial intelligence (AI) by developing instructional materials that expose students to various challenges of trustworthy AI systems. The project is focused on the vital national need for well-trained and highly knowledgeable researchers in trustworthy AI who are capable of solving real world problems in complex AI systems and help enable secure and safe adoption of AI systems. The project will have direct and long-term impact in both the public and private sectors by training the research workforce to address trustworthy AI challenges. Georgia State University is a minority-serving institution (MSI), and the project will form a coordination network consisting of research universities, 4-year colleges, historically black colleges and universities (HBCUs), Hispanic-serving institutions (HSIs), and women’s colleges in Metro Atlanta and the broader region. The collaboration will significantly increase the collective impact of the project, benefit numerous students from underrepresented groups and help increase the diversity of the research workforce. The project team will develop interactive instructional materials including a set of hands-on labs that employ state-of-the-art trustworthy AI techniques to address the various challenges of AI systems. The instructional materials to be developed include modules on adversarial machine learning, evasion attacks and defenses, data poisoning attacks and defenses, privacy attacks and defenses, testing and verification, and fairness, accountability, transparency, and ethics (FATE). The project employs learning science principles, specifically the active learning and inquiry-based learning strategies that result in deeper understanding by students and provide formative feedback to instructors. The instructional materials are based on real-world systems and are designed to systematically cover fundamental principles in trustworthy AI and practical skills. The project also will provide guidelines to help instructors integrate the modules into their curriculum. The hands-on labs will be built based on only open-source software and tools that are free to use for educational purposes and will be distributed via free cloud platforms. The project evaluation includes formative and summative evaluations that use both quantitative and qualitative approaches and will be conducted by an experienced external evaluator with help from the project team. The project will disseminate the developed materials through training workshops for the educational and research communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是通过开发教学材料,让学生接触到值得信赖的人工智能系统的各种挑战,来培训当前和未来的研究人员。该项目的重点是国家对训练有素和知识渊博的研究人员的重要需求,这些研究人员能够在复杂的人工智能系统中解决真实的世界问题,并帮助实现安全和安全地采用人工智能系统。该项目将通过培训研究人员来应对值得信赖的人工智能挑战,从而对公共和私营部门产生直接和长期的影响。格鲁吉亚州立大学是一所少数民族服务机构(MSI),该项目将形成一个协调网络,由研究型大学、4年制学院、历史上的黑人学院和大学(HBCU)、西班牙裔服务机构(HSI)以及亚特兰大大都会和更广泛地区的女子学院组成。合作将显着增加该项目的集体影响,受益于代表性不足的群体的众多学生,并有助于增加研究人员的多样性。该项目团队将开发交互式教学材料,包括一套动手实验室,采用最先进的值得信赖的人工智能技术来解决人工智能系统的各种挑战。要开发的教学材料包括对抗性机器学习,逃避攻击和防御,数据中毒攻击和防御,隐私攻击和防御,测试和验证以及公平,问责制,透明度和道德(FATE)模块。该项目采用学习科学原则,特别是主动学习和探究式学习策略,使学生有更深入的理解,并为教师提供形成性反馈。这些教学材料基于真实世界的系统,旨在系统地涵盖值得信赖的人工智能和实用技能的基本原则。该项目还将提供指导方针,帮助教师将这些模块纳入他们的课程。实践实验室将仅基于开源软件和工具构建,这些软件和工具可免费用于教育目的,并将通过免费的云平台分发。项目评价包括采用定量和定性方法的形成性评价和总结性评价,将由一名有经验的外部评价员在项目小组的帮助下进行。该项目将通过为教育和研究界举办的培训讲习班传播所编写的材料。该奖项反映了国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Takabi其他文献
A Hybrid Policy Engineering Approach for Attribute-Based Access Control (ABAC)
基于属性的访问控制 (ABAC) 的混合策略工程方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Manar Alohaly;Daniel Takabi - 通讯作者:
Daniel Takabi
Privacy preserving Neural Network Inference on Encrypted Data with GPUs
使用 GPU 对加密数据进行隐私保护神经网络推理
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Daniel Takabi;Robert Podschwadt;Jeff Druce;Curt Wu;Kevin Procopio - 通讯作者:
Kevin Procopio
Poster: Packing-aware Pruning for Efficient Private Inference based on Homomorphic Encryption
海报:基于同态加密的高效私有推理的打包感知剪枝
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Parsa Ghazvinian;Robert Podschwadt;Prajwal Panzade;M. Rafiei;Daniel Takabi - 通讯作者:
Daniel Takabi
Daniel Takabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Takabi', 18)}}的其他基金
SaTC: EDU: Secure and Private Artificial Intelligence
SaTC:EDU:安全且私密的人工智能
- 批准号:
2413856 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: An Attribute-based Insider Threat Mitigation Framework
SaTC:核心:小型:基于属性的内部威胁缓解框架
- 批准号:
2406038 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Building Cybersecurity Analytics Capacity in Big Data Era: Developing Hands-on Labs for Integrating Data Science into Cybersecurity Curriculum
建设大数据时代的网络安全分析能力:开发将数据科学融入网络安全课程的实践实验室
- 批准号:
2415022 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
SaTC: EDU: Secure and Private Artificial Intelligence
SaTC:EDU:安全且私密的人工智能
- 批准号:
2054968 - 财政年份:2021
- 资助金额:
$ 49.92万 - 项目类别:
Continuing Grant
CyberTraining: Implementation: Small: Building Future Research Workforce in Trustworthy Artificial Intelligence (AI)
网络培训:实施:小型:建立可信赖人工智能 (AI) 领域的未来研究队伍
- 批准号:
2118083 - 财政年份:2021
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Building Cybersecurity Analytics Capacity in Big Data Era: Developing Hands-on Labs for Integrating Data Science into Cybersecurity Curriculum
建设大数据时代的网络安全分析能力:开发将数据科学融入网络安全课程的实践实验室
- 批准号:
2020636 - 财政年份:2020
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2019 ACM Conference on Computer and Communications Security (ACM CCS)
2019 年 ACM 计算机和通信安全会议 (ACM CCS) 的 NSF 学生旅行补助金
- 批准号:
1932911 - 财政年份:2019
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2019 ACM Conference on Computer and Communications Security (ACM CCS)
2019 年 ACM 计算机和通信安全会议 (ACM CCS) 的 NSF 学生旅行补助金
- 批准号:
2001093 - 财政年份:2019
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An Attribute-based Insider Threat Mitigation Framework
SaTC:核心:小型:基于属性的内部威胁缓解框架
- 批准号:
2006329 - 财政年份:2019
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2018 ACM Conference on Computer and Communications Security (ACM CCS)
2018 年 ACM 计算机和通信安全会议 (ACM CCS) 的 NSF 学生旅行补助金
- 批准号:
1837755 - 财政年份:2018
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
- 批准号:
2320980 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
- 批准号:
2320979 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Cybertraining: Implementation: Small: CIberCATSS, A Comprehensive, Applied and Tangible CyberInfrastructure Summer School in Southeastern Wisconsin
网络培训:实施:小型:CIberCATSS,威斯康星州东南部的综合性、应用性和有形的网络基础设施暑期学校
- 批准号:
2229652 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
CyberTraining: Implementation: Small: COMPrehensive Learning for end-users to Effectively utilize CyberinfraStructure (COMPLECS)
网络培训:实施:小型:最终用户全面学习以有效利用网络基础设施 (COMPLECS)
- 批准号:
2320934 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Train the Trainers as Next Generation Leaders in Data Science for Cybersecurity for Underrepresented Communities
协作研究:网络培训:实施:小型:将培训师培训为代表性不足社区网络安全数据科学的下一代领导者
- 批准号:
2321111 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
CyberTraining: Implementation: Small: Infrastructure Cybersecurity Curriculum Development and Training for Advanced Manufacturing Research Workforce
网络培训:实施:小型:基础设施网络安全课程开发和先进制造研究人员培训
- 批准号:
2230025 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Broadening Adoption of Cyberinfrastructure and Research Workforce Development for Disaster Management
协作研究:网络培训:实施:小型:扩大网络基础设施的采用和灾害管理研究队伍的发展
- 批准号:
2321069 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Broadening Adoption of Cyberinfrastructure and Research Workforce Development for Disaster Management
协作研究:网络培训:实施:小型:扩大网络基础设施的采用和灾害管理研究队伍的发展
- 批准号:
2321070 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Train the Trainers as Next Generation Leaders in Data Science for Cybersecurity for Underrepresented Communities
协作研究:网络培训:实施:小型:将培训师培训为代表性不足社区网络安全数据科学的下一代领导者
- 批准号:
2321112 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Train the Trainers as Next Generation Leaders in Data Science for Cybersecurity for Underrepresented Communities
协作研究:网络培训:实施:小型:将培训师培训为代表性不足社区网络安全数据科学的下一代领导者
- 批准号:
2321110 - 财政年份:2023
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant