Attosecond and Strong Field Physics in Correlated Multielectron System

相关多电子系统中的阿秒与强场物理

基本信息

项目摘要

The astonishing advances in the generation of attosecond light pulses, and the availability of high-intensity lasers in the near-infrared region, have opened up a field of new possibilities in the study of the real-time electron dynamics in complex systems. One of the goals of attosecond and strong-field physics is to access fundamental information on electronic motion in its natural time scale and be able to control charge migration in molecules, e.g., to select a specific bond breaking at a molecular site, or to trigger a chemical reaction. The main objective of the project is to develop a new, efficient, and versatile numerical method to support the experimental and theoretical study of the interaction of multi-electron systems with ultra-short and intense laser pulses. This work aims at contributing to the development of attochemistry and ultimately bridge the gap between attosecond physics and biology. In addition, as connecting experimental measurements to real-time meaningful physical observables has shown to be far from simple, new methods will be investigated to track the rapid dynamics of photoelectron emitted from different valence shells in molecules, as well as during tunnel ionization in intense laser fields. With attosecond physics becoming among the most thriving fields of science, new theoretical tools are needed to support the exploration of attosecond phenomena in complex systems. ATTOMESA, a new numerical method for ultrafast physics, will be designed to treat various multiphoton processes investigated with current experimental setups, and to study unexplored aspects of driven multielectron attosecond and strong field dynamics in atoms and molecules. The formalism used in ATTOMESA includes electron correlation and exchange, as well as inter-channel coupling. It is based on a hybrid quadrature approach, where a quantum-chemistry description using Gaussian-type orbitals is used in the short-range to mid-range electron-molecule interaction region, while finite-element discretized variable representation functions complement the description at larger electronic radius, resulting in a highly efficient parallel ab initio method able to treat strong field processes in molecules. Consequently, processes such as high-harmonic generation and frustrated tunnel ionization can be handled fully ab initio. In this work, the following physical processes will be treated with ATTOMESA; photoionization time delay near a Cooper minimum and between different valence shells using a new spectroscopic method, estimation of electronic coherence in a biomolecule after sudden photoionization, and finally assessing the role of electron correlation in streaking/attoclock experiments. Finally, Bohmian mechanics will be employed as a useful tool to interpret strong-field phenomena in atoms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
阿秒光脉冲产生的惊人进展,以及近红外区高强度激光的可用性,为复杂系统中实时电子动力学的研究开辟了新的可能性。阿秒和强场物理学的目标之一是在其自然时间尺度上访问关于电子运动的基本信息,并且能够控制分子中的电荷迁移,例如,来选择在分子位点上的特定键断裂,或者触发化学反应。该项目的主要目标是开发一种新的,高效的,通用的数值方法,以支持多电子系统与超短和强激光脉冲相互作用的实验和理论研究。本工作旨在为阿秒化学的发展做出贡献,并最终弥合阿秒物理与生物学之间的差距。此外,由于将实验测量与实时有意义的物理观测值联系起来远非简单,因此将研究新的方法来跟踪从分子中的不同价层发射的光电子的快速动态,以及在强激光场中的隧道电离期间。随着阿秒物理学成为最繁荣的科学领域之一,需要新的理论工具来支持复杂系统中阿秒现象的探索。ATTOMESA是一种新的超快物理数值方法,将被设计用于处理各种多光子过程,并研究原子和分子中驱动多电子阿秒和强场动力学的未探索方面。在ATTOMESA中使用的形式主义包括电子相关和交换,以及通道间耦合。它是基于一个混合的正交方法,其中使用高斯型轨道的量子化学描述中使用的短程到中程电子-分子相互作用区域,而有限元离散变量表示函数的补充说明在较大的电子半径,导致一个高效的并行从头计算方法能够处理强场过程中的分子。因此,高次谐波产生和受抑隧道电离等过程可以完全从头开始处理。在这项工作中,以下物理过程将与ATTOMESA处理;附近的库珀最小值和不同的价壳层之间的光电离时间延迟,使用一种新的光谱方法,在生物分子中的电子相干性突然光电离后的估计,并最终评估电子相关的条纹/attocock实验中的作用。最后,玻姆力学将被用作解释原子中强场现象的有用工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolas Douguet其他文献

常磁性カイラル系における電流誘起磁性の観測
顺磁手性系统中电流感应磁性的观察
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nariyuki Saito;Nicolas Douguet;Hiroki Sannohe;Nobuhisa Ishii;Teruto Kanai;Yi Wu;Andrew Chew;Seunghwoi Han;Barry I. Schneider;Jeppe Olsen;Luca Argenti;Zenghu Chang;and Jiro Itatani;伊藤哲明
  • 通讯作者:
    伊藤哲明
Circular dichroism in multiphoton ionization of resonantly excited helium ions near channel closing
通道闭合附近共振激发氦离子多光子电离中的圆二色性
  • DOI:
    10.1038/s41598-024-75459-1
  • 发表时间:
    2024-11-08
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    René Wagner;Markus Ilchen;Nicolas Douguet;Philipp Schmidt;Niclas Wieland;Carlo Callegari;Zachary Delk;Alexander Demidovich;Giovanni De Ninno;Michele Di Fraia;Jiri Hofbrucker;Michele Manfredda;Valerija Music;Oksana Plekan;Kevin C. Prince;Daniel E. Rivas;Marco Zangrando;Alexei N. Grum-Grzhimailo;Klaus Bartschat;Michael Meyer
  • 通讯作者:
    Michael Meyer
Study of the radiative electron attachment and photodetachment processes for the C2H/C2H- and C4H/C4H- molecules
  • DOI:
    10.1140/epjd/e2016-70138-1
  • 发表时间:
    2016-11-10
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Marjan Khamesian;Nicolas Douguet;Samantha Fonseca dos Santos;Olivier Dulieu;Maurice Raoult;Viatcheslav Kokoouline
  • 通讯作者:
    Viatcheslav Kokoouline
Complete symmetry characterization in collisions involving four identical atoms
  • DOI:
    10.1140/epjd/e2016-60587-9
  • 发表时间:
    2016-11-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Nicolas Douguet;Elie Assemat;Viatcheslav Kokoouline
  • 通讯作者:
    Viatcheslav Kokoouline

Nicolas Douguet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolas Douguet', 18)}}的其他基金

Attosecond and Strong Field Physics in Correlated Multielectron System
相关多电子系统中的阿秒与强场物理
  • 批准号:
    2012078
  • 财政年份:
    2020
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻茎秆粗度和穗粒数多效性基因STRONG1的调控网络与作用机制分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2022
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2021
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Discovery Grants Program - Individual
Attosecond and Strong Field Physics in Correlated Multielectron System
相关多电子系统中的阿秒与强场物理
  • 批准号:
    2012078
  • 财政年份:
    2020
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Standard Grant
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2020
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2019
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Discovery Grants Program - Individual
Ab initio strong-field physics and attosecond science for molecules
从头算强场物理和分子阿秒科学
  • 批准号:
    19H00869
  • 财政年份:
    2019
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Theoretical attosecond and strong field solid state physics
理论阿秒与强场固体物理
  • 批准号:
    RGPIN-2018-04244
  • 财政年份:
    2018
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Discovery Grants Program - Individual
Time-dependent coupled-cluster method for strong-field and attosecond science
强场和阿秒科学的瞬态耦合簇方法
  • 批准号:
    17K05070
  • 财政年份:
    2017
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Investigation of Strong Field Processes for Advancing Attosecond Chemistry
推进阿秒化学的强场过程的理论研究
  • 批准号:
    1506441
  • 财政年份:
    2015
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Continuing Grant
Attosecond time-resolved streaking spectroscopy as a probe of strong field effects at the solid-vacuum interface of layered materials
阿秒时间分辨条纹光谱作为层状材料固-真空界面强场效应的探针
  • 批准号:
    281309810
  • 财政年份:
    2015
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了