Reasoning over Large Amounts of Data in Ontologies via Abstraction and Refinement
通过抽象和细化对本体中的大量数据进行推理
基本信息
- 批准号:266736200
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ontology based data access (OBDA) is an increasingly popular paradigm in the area of knowledge representation and information systems. An ontology in this context is a combination of a TBox with background domain knowledge and an ABox, which contains facts about elements of the application domain. The TBox is used to enrich and integrate large, incomplete, and possibly semi-structured data, which users can then access via queries. For example, a large part of Wikipedia is available in machine-processable form, which, together with an ontological TBox, is an important information source for many applications. To efficiently handle large ABoxes, OBDA approaches assume that the data is stored in a database. Nevertheless, the assumption of complete data that is typically made in databases (closed world assumption) does not hold and reasoning is required to answer queries. A standard reasoning approach is materialization, i.e., all entailed consequences are added to the ABox before the system accepts queries. For large ABoxes, however, the materialization can take several hours.Within this project extension, we suggest a novel approach to materialization, where we do not compute the materialization directly on the (usually large) ABox, but where we work instead on a smaller ``abstraction'' of the data. For the abstraction, we define criteria under which individuals from the ABox are considered equivalent. Such indistinguishable individuals are then represented just once in the abstraction. For TBoxes that are small compared to the ABox, the abstraction is usually significantly smaller than the original ABox and, hence, the entailed consequences can be computed efficiently in main-memory. Through the entailed consequences individuals that were indistinguishable may become distinguishable. To account for that, the initial abstraction is iteratively refined until a fix-point is reached. The results obtained so far are to be extended in several directions: 1) The developed technique for handling disjunctions is to be extended to more expressive ontology languages (while still guaranteeing soundness and completeness). 2) Relevant parts of the abstraction that must be refined, are to be identified and incrementally treated in order to minimize the communication with the database backend. 3) Based on the incremental refinements we plan to develop techniques for handling updates to the ontology. 4) The abstraction approach seems well-suited for improving the ontology debugging process in particular for large ABoxes that are learned from text via the generation of explanations directly from the abstraction. The proposed project supports the efficient use of the ever growing sources of structured data by combining well-established database technologies with in-memory-based reasoning techniques in a novel way.
基于本体的数据访问(OBDA)是知识表示和信息系统领域日益流行的范式。在此上下文中,本体是具有背景领域知识的TBox和ABox的组合,ABox包含关于应用领域元素的事实。TBox用于丰富和集成大型、不完整和可能的半结构化数据,然后用户可以通过查询访问这些数据。例如,维基百科的很大一部分是以机器可处理的形式提供的,它与本体论TBox一起是许多应用程序的重要信息源。为了有效地处理大型ABoxes,OBDA方法假设数据存储在数据库中。然而,通常在数据库中进行的完整数据的假设(封闭世界假设)并不成立,并且需要推理来回答查询。一个标准的推理方法是物化,即,在系统接受查询之前,将所有必然的结果添加到ABox。然而,对于大的ABox,物化可能需要几个小时。在这个项目扩展中,我们提出了一种新的物化方法,我们不直接在(通常很大的)ABox上计算物化,而是在更小的数据“抽象”上工作。对于抽象,我们定义了标准,根据这些标准,来自ABox的个体被认为是等价的。这样的不可区分的个体在抽象中只被表示一次。对于比ABox小的TBox,抽象通常比原始ABox小得多,因此,可以在主存中有效地计算所包含的结果。通过所产生的后果,原本难以区分的个人可能会变得可以区分。为了说明这一点,初始抽象被迭代地细化,直到达到固定点。到目前为止所获得的结果将在几个方向上扩展:1)开发的处理析取的技术将扩展到更具表达力的本体语言(同时仍然保证可靠性和完整性)。2)抽象的相关部分必须被细化,必须被识别和增量地处理,以最小化与数据库后端的通信。3)基于增量改进,我们计划开发技术处理本体的更新。4)抽象方法似乎非常适合于改进本体调试过程,特别是对于通过直接从抽象生成解释从文本中学习的大型ABoxes。拟议的项目支持结构化数据的不断增长的来源的有效利用相结合的成熟的数据库技术与基于内存的推理技术在一个新的方式。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Embracing Change by Abstraction Materialization Maintenance for Large ABoxes
大ABox抽象物化维护拥抱变革
- DOI:10.24963/ijcai.2018/244
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Markus Brenner;Birte Glimm
- 通讯作者:Birte Glimm
Scalable Reasoning by Abstraction Beyond DL-Lite
超越 DL-Lite 的抽象可扩展推理
- DOI:10.1007/978-3-319-45276-0_7
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Birte Glimm;Yevgeny Kazakov;Trung-Kien Tran
- 通讯作者:Trung-Kien Tran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Birte Glimm其他文献
Professorin Dr. Birte Glimm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向IP over EON多层网络生存性流量疏导机理的研究
- 批准号:61671313
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
面向UWB-over-fiber的光生可调谐超宽带信号研究
- 批准号:61108027
- 批准年份:2011
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
基于QAM光载毫米波信号的10Gb/s RoF系统关键技术研究
- 批准号:61001061
- 批准年份:2010
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
基于约束行为的柔性精微机构设计方法研究
- 批准号:50975007
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于双路光相位调制光学倍频法的毫米波Radio Over Fiber系统研究
- 批准号:60877053
- 批准年份:2008
- 资助金额:42.0 万元
- 项目类别:面上项目
小桐子种子油含量关键靶基因的克隆与调控研究
- 批准号:30871548
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
毫米波光纤无线系统理论与技术
- 批准号:60736003
- 批准年份:2007
- 资助金额:190.0 万元
- 项目类别:重点项目
新一代互联网络体系结构与协议理论
- 批准号:90704001
- 批准年份:2007
- 资助金额:100.0 万元
- 项目类别:重大研究计划
基于正交调制FSK/ASK 的IP-over-DWDM、FSK 光标记交换关键技术研究
- 批准号:60677004
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Large amplitude fluctuations in flow over mountains
山区流量波动幅度大
- 批准号:
23H01240 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
-- - 项目类别:
PFI-TT: High-Energy Supercapacitors Based on Materials Stable Over Large Voltage Ranges
PFI-TT:基于在大电压范围内稳定的材料的高能超级电容器
- 批准号:
2120103 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
EAR-PF: A New Technique for Determining Eruption Timescales Applied to Large Igneous Provinces and Climatic Events over Earth History
EAR-PF:一种确定喷发时间尺度的新技术,应用于地球历史上的大型火成岩省和气候事件
- 批准号:
2052963 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Fellowship Award
Low Dimensional Electronic Device Fabrication at Low Cost over Large Areas: Follow-on
大面积低成本低维电子器件制造:后续
- 批准号:
EP/W009757/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Structure Search Over Large Scale Heterogeneous Information Networks
大规模异构信息网络的结构搜索
- 批准号:
DP200101338 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
TWC: Large: Collaborative: Computing Over Distributed Sensitive Data
TWC:大型:协作:分布式敏感数据计算
- 批准号:
2040215 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: SMALL: STITCH: Request-SLO-Aware Orchestration for Large-scale Sensing Services over IoT-Edge-Cloud Hierarchy
SHF:SMALL:STITCH:基于 IoT-边缘-云层次结构的大规模传感服务的请求 SLO 感知编排
- 批准号:
2008835 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Efficiently Distributing Optimization over Large-Scale Networks
在大规模网络上高效分布优化
- 批准号:
1933027 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




