Applying motivic filtrations
应用动机过滤
基本信息
- 批准号:269677244
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical algebraic topology pursues the classification of topological manifolds and spaces with the aid of algebraic invariants. Especially interesting ones are the representable algebraic invariants, also known as cohomology theories, whose representing object (known as a spectrum) may be seen as a topological space endowed with a particularly nice type of addition law. The collection of all spectra forms the stable homotopy category and this viewpoint has led to quite amazing progress in the original classification problem. In contrast to algebraic topology, algebraic geometry deals with the considerably more inflexible algebraic manifolds, given locally as the solutions of polynomial equations. In the 1990s, Fabien Morel and Vladimir Voevodsky extended the topological approach via generalised cohomology theories to the setting of algebraic geometry, initiating a great deal of new research in this direction. This research furnished a framework for the construction and study of many very interesting cohomology theories on algebraic manifolds, now known as motivic stable homotopy category over a field or more generally over a base-scheme. For the study of these algebraic invariants, a technical tool, the use of filtrations, is essential. In the topological setting, the use of many different filtrations, or towers, have been used and played off against each other in order to gain a better theoretic understanding of basic objects of study, as well as for making concrete computations. The motivic stable homotopy category has given rise to many such filtrations, some direct generalisations of the topological ones, others quite new, whose study in the last decade has brought astounding results. The goal of this project is to study several of these motivic filtrations and to use their properties to achieve concrete results. Especially important examples for study are Voevodsky’s slice filtration and the filtrations by connectivity. These filtrations and their relation with one another should be helpful in understanding algebraic K-theory, cooperations for mod p motivic cohomology, homotopy sheaves of the sphere-spectrum, as well as motivic orientations, generalising the classical Todd genus.
经典代数拓扑学借助于代数不变量来研究拓扑流形和拓扑空间的分类。特别有趣的是可表示的代数不变量,也被称为上同调理论,其表示对象(称为谱)可以被视为具有特别好的加法律类型的拓扑空间。所有谱的集合形成稳定同伦范畴,这一观点在最初的分类问题上取得了令人惊讶的进展。相对于代数拓扑学,代数几何学处理的是相当不灵活的代数流形,局部地作为多项式方程的解给出。在20世纪90年代,法比安莫雷尔和弗拉基米尔Voevodsky扩大了拓扑方法通过广义上同调理论的设置代数几何,开始了大量的新的研究在这一方向。这项研究提供了一个框架,许多非常有趣的代数流形上的上同调理论的建设和研究,现在被称为motivic稳定同伦范畴在一个领域或更普遍的基础计划。为了研究这些代数不变量,一个技术工具,使用过滤,是必不可少的。在拓扑设置中,许多不同的过滤或塔的使用已经被使用,并且相互抵消,以便对基本研究对象获得更好的理论理解,以及进行具体计算。动机稳定同伦范畴产生了许多这样的过滤,一些直接概括的拓扑,其他相当新,其研究在过去十年中带来了惊人的结果。这个项目的目标是研究其中的几个动机过滤,并利用它们的属性来实现具体的结果。特别重要的例子是Voevodsky的切片过滤和过滤的连接。这些filtrations和他们之间的关系应该有助于理解代数K-理论,合作模p motivic上同调,同伦层的球谱,以及motivic方向,概括的经典托德属。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marc Levine其他文献
Professor Dr. Marc Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Marc Levine', 18)}}的其他基金
Enumerative geometry with quadratic forms
具有二次形式的枚举几何
- 批准号:
404436668 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
环面空间的上同调与motivic稳定同伦
- 批准号:12271183
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
代数群作用下复射影簇的Lawson同调与morphic上同调
- 批准号:12126309
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
代数群作用下复射影簇的Lawson同调与morphic上同调
- 批准号:12126354
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
同伦群的结构与计算
- 批准号:11801082
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Motivic稳定同伦与环面拓扑中R-S谱序列的研究
- 批准号:11871284
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
Wall crossing现象和内禀Higgs态
- 批准号:11305125
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Multiple Zeta Values in Function Fields using Motivic Framework
使用 Motivic 框架的函数域中的多个 Zeta 值
- 批准号:
2302399 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conway Motivic Zeta の有理性、代数性とConservativity
康威动机泽塔的理性、代数性和保守性
- 批准号:
23K03071 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Motivic, Operadic, and Combinatorial Homotopy Theory
RUI:动机、操作和组合同伦理论
- 批准号:
2204365 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2204357 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Galois Representations: Deformation Theory and Motivic Origins
职业:伽罗瓦表示:变形理论和动机起源
- 批准号:
2120325 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant