Degenerations of Calabi-Yau Manifolds and Related Geometries
Calabi-Yau 流形的退化及相关几何形状
基本信息
- 批准号:272561367
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Independent Junior Research Groups
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Degenerations of Calabi-Yau Manifolds and Related Geometries.Calabi-Yau manifolds form a central geometric class with a plethora of connections and applications to other mathematical areas and mathematical physics. Various structural questions about the particularly interesting three-dimenensional such geometries could not be answered to date, e.g. whether the number of deformation types is finite, whether all deformation types are connected by extremal transitions or to which extent mirror symmetry applies. The goal of this proposal is the development of methodology to study these questions.The basic approach of the project is the maximal degeneration of the Calabi-Yau geometry. In the past decade, methods controlling such degenerations were developed in particular by Gross and Siebert. These employ logarithmic and tropical geometry. The motivation for degenerating stems from mathematical physics. Around 1990, string theorists discovered mirror symmetry, a deep relationship between different Calabi-Yau geometries featuring degenerations. Mirror symmetry relates the complex geometry of one Calabi-Yau manifold to the symplectic geometry of another Calabi-Yau manifold. The structural data on the symplectic side are governed by holomorphic curves, that on the complex side by variations of the complex structure. The proposed project aims at extending this relationship to curves of higher genus and the corresponding complex data. For this purpose, existing methods by Costello-Li and Barannikov-Kontsevich shall be translated into logarithmic geometry and then be enhanced. Also tropical methods shall be extended by studying tropical deformations. These directly relate to Morrison's conjecture stating that mirror symmetry is compatible with extremal transitions. An extremal transitions connects two different Calabi-Yau manifolds and Reid conjectured that all three-dimensional Calabi-Yau manifolds are connected by such transitions. We seek to make progress towards these conjectures. Finally, related structures like homological mirror symmetry relative to a divisor and non-compact Calabi-Yau manifolds based on a spectral curve shall be analysed as this extends the scope of the applications for the developed techniques.
Calabi-Yau流形及其相关几何的退化。Calabi-Yau流形形成了一个中心几何类,它与其他数学领域和数学物理有着大量的联系和应用。关于这种特别有趣的三维几何的各种结构问题到目前为止还无法回答,例如变形类型的数量是否有限,是否所有的变形类型都通过极端跃迁联系在一起,或者镜像对称在多大程度上适用。这个方案的目标是发展研究这些问题的方法论。该项目的基本方法是最大限度地简并Calabi-Yau几何。在过去的十年里,格罗斯和西伯特开发了控制这种退化的方法。它们使用对数几何和热带几何。退化的动机源于数学物理。大约在1990年,弦理论家发现了镜像对称性,这是不同的Calabi-Yau几何之间以简并为特征的深层次关系。镜像对称将一个Calabi-Yau流形的复杂几何与另一个Calabi-Yau流形的辛几何联系起来。辛侧的结构数据由全纯曲线控制,复侧的结构数据由复结构的变化控制。建议的项目旨在将这种关系扩展到更高亏格的曲线和相应的复杂数据。为此,Costello-Li和Barannikov-Kontsevich的现有方法应转化为对数几何,然后加以加强。此外,热带方法还应通过研究热带变形来推广。这与莫里森关于镜像对称性与极值跃迁相容的猜想有直接关系。极值跃迁连接了两个不同的Calabi-Yau流形,Reid猜想所有三维的Calabi-Yau流形都是通过这种极值跃迁连接的。我们寻求在这些猜想方面取得进展。最后,将分析相关的结构,如相对于除数的同调镜像对称性和基于谱曲线的非紧致Calabi-Yau流形,因为这扩展了所开发技术的应用范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Helge Ruddat其他文献
Professor Dr. Helge Ruddat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Helge Ruddat', 18)}}的其他基金
Hodge theory of Log Singular Loci
对数奇异位点的 Hodge 理论
- 批准号:
241231364 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Fellowships
Toric degenerations and Calabi-Yau orbifolds
环面变性和 Calabi-Yau 眼圈
- 批准号:
165706425 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
分次斜 Calabi-Yau 代数的研究
- 批准号:Y24A010046
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于退化Calabi-Yau流形的研究
- 批准号:12301059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Calabi-Yau代数的同调和表示与Poisson代数的同调
- 批准号:11901396
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
模型结构、三角范畴与Calabi-Yau代数
- 批准号:11871125
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
镜对称及双有理代数几何背景下的高维 Calabi-Yau 簇
- 批准号:11601015
- 批准年份:2016
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
箭图代数与Calabi-Yau范畴
- 批准号:11671230
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
Calabi-Yau范畴上的非交换几何结构
- 批准号:11671281
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
分次Calabi-Yau代数的有限群作用及其不变子代数
- 批准号:11571239
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
Pointed Hopf代数Calabi-Yau性质的研究
- 批准号:11301126
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Calabi-Yau 三流形中的孤立有理曲线研究
- 批准号:11301496
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
- 批准号:
23K03396 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
- 批准号:
EP/X040674/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Degenerations of Fano and Calabi-Yau varieties and its applications
Fano和Calabi-Yau品种的退化及其应用
- 批准号:
23K03032 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
- 批准号:
23K03066 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized Calabi-Yau Geometry
广义卡拉比-丘几何
- 批准号:
559503-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
- 批准号:
EP/W026554/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Calabi-Yau Mirror Symmetry
卡拉比丘镜像对称
- 批准号:
574294-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry
表示论、卡拉比-丘流形和镜像对称
- 批准号:
2227199 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual