Bilinear Compressed Sensing - Efficiency, Structure, and Robustness

双线性压缩感知 - 效率、结构和鲁棒性

基本信息

项目摘要

Practical data acquisition processes often rely on uncalibrated systems. This is a natural source of bilinear compressed sensing problems. These are problems, where the measurement outcomes depend linearly on both the signal and the calibration parameters. If one uses traditional Compressed Sensing (CS) schemes for such bilinear problems, one needs to operate at sub-optimal sensing rates or incur significant reconstruction errors due to model mismatch.For this reason, work on a theoretical foundation of such "blind information retrieval problems" has started over the past years, partly in the context of our project in the first phase of the priority program. In many cases, it has been established that these problems can indeed have tractable solutions. These first results, however, were still somewhat removed from being applicable in practice. The goal of our project will be to close this gap by developing theory for bilinear compressed sensing that better addresses issues arising in applications. In this vein, we have identified the following challenges that will serve as a guiding theme for our project. (1) Efficiency: Design and analyze algorithms that can cope with real-world problem sizes. This will frequently necessitate going beyond the framework of convex optimization. (2) Structure: Rely less on highly randomized constructions that are typically comparativelysimple to analyze mathematically, but often impractical to implement.(3) Robustness: Focus on the ability of reconstruction algorithms to withstand theimpact of noise and model mismatch present in real-world applications.
实际的数据采集过程通常依赖于未校准的系统。这是双线性压缩感知问题的自然来源。这些是测量结果线性依赖于信号和校准参数的问题。如果使用传统的压缩感知(CS)方案来处理此类双线性问题,则需要以次优的感知速率进行操作,或者由于模型失配而产生显著的重构误差。因此,在过去几年中,此类“盲信息检索问题”的理论基础的工作已经开始,部分是在我们优先计划第一阶段的项目背景下。 在许多情况下,人们已经确定,这些问题确实可以有易于处理的解决办法。 然而,这些最初的结果在实践中仍然有些不适用。 我们项目的目标是通过开发双线性压缩传感理论来缩小这一差距,以更好地解决应用中出现的问题。在这种情况下,我们确定了以下挑战,这些挑战将作为我们项目的指导主题。(1)效率:设计和分析可以科普实际问题规模的算法。 这将经常需要超越凸优化的框架。 (2)结构:少依赖高度随机化的结构,这些结构通常比较容易进行数学分析,但往往不切实际。(3)鲁棒性:重点关注重建算法承受现实应用中存在的噪声和模型失配影响的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. David Gross, Ph.D.其他文献

Professor Dr. David Gross, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Sparsity-Based Autonomous Adaptability in Circuit and Systems Utilizing Compressed Sensing
利用压缩感知的电路和系统中基于稀疏性的自主适应性
  • 批准号:
    23K18463
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
PhD in Compressed Sensing for Egocentric Video
自我中心视频压缩感知博士
  • 批准号:
    2894973
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Compressed sensingを用いた正確な口腔癌深達度の三次元的取得
利用压缩传感精确三维获取口腔癌浸润深度
  • 批准号:
    22K10174
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
  • 批准号:
    10674616
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
  • 批准号:
    RGPIN-2018-06135
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Compressed sensing for medical applications
医疗应用的压缩传感
  • 批准号:
    EP/W015412/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
  • 批准号:
    10527816
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
  • 批准号:
    2131115
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of EEG Measurement Circuit System by Compressed Sensing Using Random Sampling
利用随机采样的压缩感知开发脑电图测量电路系统
  • 批准号:
    21H03410
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of high-speed coronary MRA imaging method using compressed sensing
利用压缩感知开发高速冠状动脉MRA成像方法
  • 批准号:
    21K07621
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了