Optimization Techniques for Explicit Methods for GPU-Accelerated Solution of Initial Value Problems of Ordinary Differential Equations (OTEGO)

GPU 加速求解常微分方程初值问题 (OTEGO) 显式方法的优化技术

基本信息

  • 批准号:
    277319075
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2015
  • 资助国家:
    德国
  • 起止时间:
    2014-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Graphics Processing Units (GPUs) are used increasingly to accelerate compute intensive applications, e.g., in the domain of scientific computing, by exploiting massive parallelism. The project proposed investigates parallel implementations of explicit solution methods for initial value problems (IVPs) of systems of ordinary differential equations (ODEs) on GPUs. In the first phase of the project, a systematic general approach for the optimization and self-adaptation of ODE methods was developed, which is based on a representation of the methods by data flow graphs and which is applicable to arbitrary explicit ODE methods. The goal of the self-adaptation is to reach the best possible runtime for the given IVP to be solved on the given GPU hardware and, thus, to reach portability of performance. Single GPUs as well as homogeneous multi-GPU clusters were considered as target platforms. Building on the results of the first phase, the second phase investigates new optimization techniques and improves the self-adaptation capabilities of the solvers. This includes the automatic generation of specialized implementation variants which are adapted to the method coefficients and the access distance of the ODE system. In particular for ODE systems with limited access distance, temporal and spatial tiling strategies which extend over the stages of a time step and over several time steps are investigated. The range of target platforms is extended to heterogeneous multi-GPU clusters, including the available CPU cores.
图形处理单元(gpu)越来越多地用于加速计算密集型应用程序,例如,在科学计算领域,通过利用大规模并行性。该项目提出了在gpu上研究常微分方程(ode)系统的初值问题(IVPs)的显式求解方法的并行实现。在项目的第一阶段,开发了一种系统的ODE方法优化和自适应的通用方法,该方法基于数据流图的方法表示,适用于任意显式ODE方法。自适应的目标是在给定的GPU硬件上实现给定IVP的最佳运行时,从而实现性能的可移植性。考虑单gpu和同构多gpu集群作为目标平台。在第一阶段成果的基础上,第二阶段研究新的优化技术,提高求解器的自适应能力。这包括适应ODE系统的方法系数和访问距离的专门实现变体的自动生成。特别是对于具有有限访问距离的ODE系统,研究了在一个时间步长和几个时间步长的时间和空间平铺策略。目标平台的范围扩展到异构多gpu集群,包括可用的CPU内核。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Matthias Korch其他文献

Privatdozent Dr. Matthias Korch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
  • 批准号:
    10087309
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
  • 批准号:
    EP/Y035933/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了