Generation of ultrafine grained Ni-CNT composites by severe plastic deformation

通过剧烈塑性变形生成超细晶粒 Ni-CNT 复合材料

基本信息

项目摘要

Nanocrystalline and ultrafine grained materials have been a subject of extensive research over the past couple of decades due to their unique mechanical and functional properties. Although several routes to obtain such materials are currently known, one of the most efficient processes is severe plastic deformation. High pressure torsion (HPT) processing, for example, is a very effective way to generate ultrafine grained or even nanocrystalline microstructures from initial coarse grained single phase materials. Unfortunately, the processed structures are thermally unstable due to the high amount of stored energy in their large grain boundary area, and coarsening of the microstructures (even at room temperature) alters material properties considerably. As a consequence, the thermal stability of nanocrystalline and ultrafine grained materials is a fundamental issue for future potential applications.The aim of this project is the development of novel HPT-processed composite materials, in which the major issue of structural instability is overcome. Carbon nanotubes (CNTs) dispersed throughout a Ni matrix can stabilize the microstructure against grain growth. Additionally, due to their outstanding intrinsic properties, CNTs are expected to improve the mechanical and tribological properties as well. To achieve this goal, the HPT process will be optimized to obtain a homogeneous dispersion of the CNTs within the matrix, and the effect of the highly energetic HPT processing on the CNTs will be thoroughly studied. Additionally, an advanced characterization of the microstructural state through the different processing steps (as-sintered, as-deformed and annealed) will be performed. The comprehensive microstructural characterization in combination with an examination of the CNT influence on the mechanical and tribological properties as well as on thermal stability of SPD processed CNT-reinforced metal matrix composites will be used to find the governing structure/property relationships which can describe the optimal material performance. Such structure/property relationships will provide a tool for the optimization of CNT-based composites with well-defined properties. Therefore, the proposed project can serve as a starting point regarding further research in this area with other matrix materials and other types of reinforcement phases. Additionally, these results will be useful for the evaluation of these composites from a scientific perspective as suitable candidates for mechanical applications.
纳米晶和超细晶材料由于其独特的力学和功能特性,在过去的几十年里一直是广泛研究的主题。尽管目前已知获得这种材料的几种途径,但最有效的方法之一是剧烈塑性变形。例如,高压扭转(HPT)处理是从初始粗晶单相材料产生超细晶或甚至纳米晶微结构的非常有效的方式。不幸的是,加工的结构是热不稳定的,由于大量的存储能量在其大的晶界区域,和粗化的微观结构(即使在室温下)改变材料的性能显着。因此,纳米晶和超细晶材料的热稳定性是未来潜在应用的基本问题。本项目的目的是开发新型HPT处理复合材料,其中结构不稳定的主要问题得到克服。碳纳米管(CNTs)分散在整个镍基体中可以稳定微观结构,防止晶粒生长。此外,由于其优异的固有性能,碳纳米管有望改善机械和摩擦学性能以及。为了实现这一目标,将优化HPT工艺以获得CNT在基体内的均匀分散,并将彻底研究高能HPT处理对CNT的影响。此外,还将通过不同的加工步骤(烧结、变形和退火)对微观结构状态进行高级表征。结合CNT对机械和摩擦学性能以及SPD处理的CNT增强金属基复合材料的热稳定性的影响的检查的综合微观结构表征将用于找到可以描述最佳材料性能的管理结构/性能关系。这样的结构/性能关系将提供一个工具,用于优化CNT基复合材料具有明确定义的属性。因此,拟议的项目可以作为一个起点,在这一领域的进一步研究与其他基质材料和其他类型的增强相。此外,这些结果将是有用的,从科学的角度来评估这些复合材料作为合适的候选人的机械应用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Study of the structural defects on carbon nanotubes in metal matrix composites processed by severe plastic deformation
  • DOI:
    10.1016/j.carbon.2017.09.075
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Aristizabal, Katherine;Katzensteiner, Andreas;Suarez, Sebastian
  • 通讯作者:
    Suarez, Sebastian
Temperature dependent structural evolution in nickel/carbon nanotube composites processed by high-pressure torsion
高压扭转处理镍/碳纳米管复合材料的温度依赖性结构演化
Evolution of the lattice defects and crystalline domain size in carbon nanotube metal matrix composites processed by severe plastic deformation
  • DOI:
    10.1016/j.matchar.2019.06.019
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    K. Aristizabal;A. Katzensteiner;M. Leoni;F. Mücklich;S. Suárez
  • 通讯作者:
    K. Aristizabal;A. Katzensteiner;M. Leoni;F. Mücklich;S. Suárez
Friction and Tribo-Chemical Behavior of SPD-Processed CNT-Reinforced Composites
  • DOI:
    10.3390/lubricants7090075
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Aristizabal, Katherine;Tayrac, Alexandra;Suarez, Sebastian
  • 通讯作者:
    Suarez, Sebastian
Microstructural evolution during heating of CNT/Metal Matrix Composites processed by Severe Plastic Deformation
  • DOI:
    10.1038/s41598-020-57946-3
  • 发表时间:
    2020-01-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Aristizabal, Katherine;Katzensteiner, Andreas;Suarez, Sebastian
  • 通讯作者:
    Suarez, Sebastian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Sebastian Suarez Vallejo其他文献

Dr.-Ing. Sebastian Suarez Vallejo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Sebastian Suarez Vallejo', 18)}}的其他基金

Self-lubricating nanoscaled metal matrix composites
自润滑纳米级金属基复合材料
  • 批准号:
    462682285
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

PICH蛋白处理超细后期桥(ultrafine anaphasebridge)的分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Investigation on the polymer-like deformation behavior in ultra-fine grained metastable austenitic steel
超细晶亚稳奥氏体钢类聚合物变形行为的研究
  • 批准号:
    22K14509
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Manufacture process on high-strength and ultrafine-grained pure titanium by single-pass heavy-strain thermomechanical treatment
单道次高应变形变热处理高强度超细晶纯钛制造工艺
  • 批准号:
    22K04762
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
  • 批准号:
    RGPIN-2018-05826
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Abnormal grain growth in ultrafine grained metals under high cycle loading
高循环载荷下超细晶粒金属的异常晶粒生长
  • 批准号:
    2224372
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Ultrafine-grained Magnesium Alloys Manufactured by Multi-axial Forging: Elucidating Mechanisms of Achieving Both High Strength and High Ductility
多轴锻造制造超细晶镁合金:阐明实现高强度和高延展性的机制
  • 批准号:
    2130586
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
  • 批准号:
    RGPIN-2018-05826
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of ultrafine-grained high entropy alloys through chain reaction of grain boundary precipitation
利用晶界沉淀链式反应开发超细晶高熵合金
  • 批准号:
    20H02464
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
  • 批准号:
    RGPIN-2018-05826
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Enhanced compressibility of ultrafine-grained semi-solid two-phase aluminum alloys
超细晶粒半固态两相铝合金的增强压缩性
  • 批准号:
    19K04079
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microstructural Tailoring of Ultrafine-Grained Magnesium Alloys for Lightweight Applications
用于轻量化应用的超细晶镁合金的微观结构定制
  • 批准号:
    RGPIN-2018-05826
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了