Diffusion on irregular sets
不规则集合上的扩散
基本信息
- 批准号:281034495
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The leading aim of this project is to understand diffusion processes on highly irregular sets. Fractal geometry is a mathematical language and discipline used to describe, study and analyse properties of such structures. A diffusion process models the continuous propagation of a particle or heat conduction in a given medium. The theory of diffusion processes and harmonic structures on homogenous self-similar fractals has been intensively investigated, for example by Barlow, Denker, Hambly, Hattori, Kigami, Lau, Lindstrom, Lapidus and Metz.The results of this project we believe will give a deeper insight into the behaviour of diffusion on highly irregular media in nature. Recent investigations have shown that applications can be found in, for instance, neuronal flows in the brain cortex, oxygen transport in the human lung and gas propagation in rock layers.The first part of the project is to construct diffusion processes on inhomogenous self-similar, self-affine and self-conformal fractals via random walks. The extension of the current known theory to these more general fractals will require a combination of well-established theories and innovative methods, for example, renewal theory, non-stationary multi-type branching processes and thermodynamic formalism. The random walk approach allows for an intuitive and geometric construction yielding new insights, and which is similar to a construction of a Brownian motion on n-dimensional Euclidean space. In our setting, several substantial difficulties arise in that fractals often lack certain regularity conditions, such as symmetry. Some of these difficulties have been overcome on a specific set of self-similar fractals by using an analytic approach due to Kigami, with various further developments by, for instance, Freiberg, Hambly, Strichartz and Teplyaev. In these cases, we are confident that the construction involving random walks will give further information and insight on the behaviour of diffusion processes on fractals and also allow for further generalisations.There is a well-known correspondence between diffusion processes and Laplacians. In the second part of the project, estimates on the transition density of the diffusion processes we will construct will yield the walk dimension and the spectral dimension of the resulting Laplacian. These different notions of dimension shall then be related to a fractal dimension of the set. Namely, we will establish an Einstein-like relation for a wide class of fractals - currently known for self-similar fractals only.The final objective is to establish a connection of diffusion processes to non-commutative geometry; that is, we will compare the resulting Laplacian to the square of Dirac operators proposed by the principle investigator, Falconer, Hinz, Kelleher, Samuel and Teplayev. Further, a class of KMS-states (a generalisation of Gibbs states) motivated by notions in quantum statistical mechanics, will be investigated.
这个项目的主要目标是了解高度不规则集合上的扩散过程。分形几何是一门用来描述、研究和分析这类结构性质的数学语言和学科。扩散过程模拟粒子或热传导在给定介质中的连续传播。均匀自相似分形上的扩散过程和调和结构的理论已经得到了深入的研究,例如Barlow,Denker,Hamble,Hattori,Kigami,Lau,Lindstrom,Lapidus和Metz。我们相信这个项目的结果将使我们对自然界中高度不规则的介质上的扩散行为有更深入的了解。最近的研究表明,它在大脑皮层的神经元流动、人类肺部的氧气传输和岩层中的气体传播等方面都有应用。该项目的第一部分是通过随机行走在非均匀自相似、自仿射和自共形分形上构建扩散过程。将目前已知的理论扩展到这些更一般的分形学将需要成熟的理论和创新方法的结合,例如更新理论、非平稳多类型分支过程和热力学形式论。随机游走方法允许产生新见解的直观和几何构造,并且类似于n维欧氏空间上的布朗运动的构造。在我们的设置中,出现了几个实质性的困难,因为分形图通常缺乏某些规则条件,如对称性。其中一些困难已经通过使用分析方法在一组特定的自相似分形图上克服了,这要归功于Kigami,以及例如Freiberg、Hamble、Strichartz和Teplyaev的各种进一步发展。在这些情况下,我们相信,涉及随机游动的构造将提供关于扩散过程在分形图上的行为的进一步信息和洞察,并允许进一步的推广。扩散过程和拉普拉斯之间存在众所周知的对应。在项目的第二部分,对我们将要构造的扩散过程的跃迁密度的估计将得到所产生的拉普拉斯的步长维度和谱维度。然后,这些不同的维度概念应与集合的分维相关联。也就是说,我们将为一大类分形图建立一个类似爱因斯坦的关系--目前已知的只有自相似分形图。最终目标是建立扩散过程与非对易几何之间的联系;也就是说,我们将把得到的拉普拉斯算符与主要研究者Falconer,Hinz,Kelleher,Samuel和Teplayev提出的Dirac算子的平方进行比较。此外,还将研究由量子统计力学中的概念驱动的一类KMS态(Gibbs态的推广)。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A classification of aperiodic order via spectral metrics and Jarník sets
通过谱度量和 Jarník 集对非周期序进行分类
- DOI:10.1017/etds.2018.7
- 发表时间:2019
- 期刊:
- 影响因子:0.9
- 作者:M. Gröger;M. Kesseböhmer;A. Mosbach;T. Samuel;M. Steffens
- 通讯作者:M. Steffens
Scaling properties of the thue–morse measure
thueâmorse 测度的标度属性
- DOI:10.3934/dcds.2019168
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:M. Baake;P. Gohlke;M. Kesseböhmer;T. Schindler
- 通讯作者:T. Schindler
Regularity of aperiodic minimal subshifts
非周期性最小子移的规律性
- DOI:10.1007/s13373-017-0102-0
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:F. Dreher;M. Kesseböhmer;A. Mosbach;T. Samuel;M. Steffens
- 通讯作者:M. Steffens
Diffraction of Return Time Measures
返回时间测量的衍射
- DOI:10.1007/s10955-018-2196-5
- 发表时间:2019
- 期刊:
- 影响因子:1.6
- 作者:M. Kesseböhmer;A. Mosbach;T. Samuel;M. Steffens
- 通讯作者:M. Steffens
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marc Keßeböhmer其他文献
Professor Dr. Marc Keßeböhmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Marc Keßeböhmer', 18)}}的其他基金
Renewal theory and statistics of rare events in infinite ergodic theory
无限遍历理论中稀有事件的更新理论和统计
- 批准号:
229774914 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Irregular Modulation: Harnessing the Hidden Potential of PWM
职业:不规则调制:利用 PWM 的隐藏潜力
- 批准号:
2339806 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341951 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Circuit mechanism of predicting regular/irregular rewards
预测定期/不定期奖励的电路机制
- 批准号:
23H02589 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: The impact of irregular small-scale topography on large-scale circulation patterns
合作研究:不规则小尺度地形对大尺度环流格局的影响
- 批准号:
2241626 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: The impact of irregular small-scale topography on large-scale circulation patterns
合作研究:不规则小尺度地形对大尺度环流格局的影响
- 批准号:
2241625 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Interagency Agreement
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
- 批准号:
2889685 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship