Aachen Dynamic Optimization Environment (ADE): Modeling and numerical methods for higher-order sensitivity analysis of differential-algebraic equation systems with optimization criteria
亚琛动态优化环境 (ADE):具有优化准则的微分代数方程系统高阶灵敏度分析的建模和数值方法
基本信息
- 批准号:281932795
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the ADE project is to develop modeling and novel numerical methods for differential-algebraic equations systems with optimality criteria (DAEO). In the first funding period, the key methodology for the numerical simulation of DAEOs was the substitution of the embedded nonlinear program of the DAEO by its associated Karush-Kuhn-Tucker (KKT) necessary conditions of optimality. This approach transforms DAEOs into special nonsmooth differential-algebraic equation (DAE) systems. In particular, the task of AVT.SVT part was to adapt methods for simulation/sensitivity analysis of nonsmooth DAE systems for DAEOs, while the STCE part focused on the automatic generation of higher-order derivatives and McCormick relaxations of the model residuals. The latter form the basis for a potential second funding period covered by the follow-up application at hand.In the first funding period, numerical methods for the simulation and sensitivity analysis of DAEOs were developed. In the second period we aim to solve optimal control, parameter estimation or model-based experimental design problems. To solve the upper level NLP, we intent to use gradient-based numerical optimization algorithms such as sequential quadratic programming (SQP) or interior point methods. If required, the lower level embedded NLP shall be solved to global optimality, e. g. by means of Branch & Bound methods.
ADE项目的目标是为具有最优性准则的微分代数方程系统(DAEO)开发建模和新的数值方法。 在第一个资助期内,DAEO数值模拟的关键方法是用其相关的Karush-Kuhn-Tucker(KKT)最优性必要条件替代DAEO的嵌入式非线性程序。这种方法将DAEO转化为特殊的非光滑微分代数方程(DAE)系统。特别是,AVT.SVT部分的任务是调整DAEO的非光滑DAE系统的模拟/灵敏度分析方法,而STCE部分则侧重于自动生成高阶导数和模型残差的McCormick松弛。在第一个供资期内,开发了用于模拟和敏感性分析DAEO的数值方法。在第二阶段,我们的目标是解决最优控制,参数估计或基于模型的实验设计问题。为了解决上层NLP,我们打算使用基于梯度的数值优化算法,如序列二次规划(SQP)或内点方法。如果需要,较低级别的嵌入式NLP应求解为全局最优,e。G.通过分支和绑定方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Alexander Mitsos, Ph.D.其他文献
Professor Alexander Mitsos, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Alexander Mitsos, Ph.D.', 18)}}的其他基金
MAiNGO – McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization
MAiNGO – 基于 McCormick 的混合整数非线性全局优化算法
- 批准号:
442664501 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Improved McCormick Relaxations for the efficient Global Optimization in the Space of Degrees of Freedom
改进麦考密克松弛以实现自由度空间中的有效全局优化
- 批准号:
326011235 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Parameter estimation with (almost) deterministic global optimization
(几乎)确定性全局优化的参数估计
- 批准号:
451008496 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamic optimization and experimental validation of a self-powered wrist-worn wearable device
自供电腕戴式可穿戴设备的动态优化与实验验证
- 批准号:
24K17226 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Dynamic Decision-Making Under Uncertainty via Distributionally Robust Optimization
职业:通过分布稳健优化在不确定性下进行动态决策
- 批准号:
2342505 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Static, Dynamic and Kinematic Analysis and Optimization of Tensegrity Structures through Cellular Morphogenesis
职业:通过细胞形态发生对张拉整体结构进行静态、动态和运动学分析和优化
- 批准号:
2238724 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
DESC: Type I: Dynamic Optimization for Leaps in Sustainability-Centric Computing System Design
DESC:类型 I:以可持续发展为中心的计算系统设计飞跃的动态优化
- 批准号:
2324707 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Performance and Optimization of Timber Assemblies Subjected to Near-Field Dynamic Loads
受近场动态载荷影响的木材组件的性能和优化
- 批准号:
DGECR-2022-00517 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
- 批准号:
536637-2018 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Dynamic Fracture Characterization and Integrated Optimization of Enhanced Oil Recovery Performance in Tight Formations under Uncertainty
不确定性条件下致密地层动态裂缝表征及提高采收率综合优化
- 批准号:
RGPIN-2019-07150 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Generalization of Dynamic Metabolic Flux Models and their Application for Economic Optimization of Bioprocesses
动态代谢通量模型的推广及其在生物过程经济优化中的应用
- 批准号:
RGPIN-2019-04609 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual