Dislocation Motion in Single-Phase High-Entropy Alloys -- Theory and Simulation
单相高熵合金中的位错运动——理论与模拟
基本信息
- 批准号:289363470
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-entropy alloys (HEA), loosely defined as metallic solid solutions containing more than four elements in near-equimolar composition, represent an exciting new class of alloys. In particular the combination of high strength and good ductility as well as high hardness, wear and corrosion resistance makes HEAs promising candidate materials for high performance structural applications. The excellent failure resistance of HEAs is commonly attributed to some extreme form of solid solution strengthening. However, as in HEAs "every atom is a solute atom", conventional theories of solid solution hardening cannot be directly applied, and the necessary novel theoretical concepts for analyzing and predicting dislocation motion in HEAs have not yet been established. The aim of this project is to obtain a fundamental understanding of how dislocation glide motion, and hence dislocation plasticity in HEAs, is influenced by their unique underlying atomic structure, and to develop a theoretical framework for predicting the stress and temperature dependence of the dislocation velocity and the concomitant plastic deformation behavior. To this end, we propose a multi-scale modeling approach where atomistic simulations are used to characterize the energy landscape in which dislocations move. The results are analyzed by drawing on methods and theoretical concepts developed in statistical physics to identify the relevant features and spatial correlations of the energy landscape. This information serves as input for the mesoscopic simulation of dislocations using the discrete dislocation dynamics (DDD) method, where atomic-scale information on dislocation-lattice interactions is incorporated in the form of a stochastic pinning field. This combination of atomistic and mesoscale simulations methods allows for the study of thermally activated dislocation motion governed by complex, extended energy barriers, which result from the possibility of the dislocations to adjust their shape to the local pinning energy landscape. In addition, Monte Carlo simulations are used to study how short-range diffusion can lead to ageing by changing the local energy landscape around a dislocation at rest. The changes in energy and the associated length and time scales are then used in a mesoscale framework to investigate the dynamic strain aging and PLC-like phenomena, which have been recently observed in HEAs. Ultimately, this study on model systems for single-phase fcc HEAs will serve to develop a methodological framework which enables the computational prediction of the plastic deformation behavior of HEAs based on their atomic structure and composition. Such a framework is crucial for computational alloy design, which is of particular importance for HEA systems, where the large number of compositional degrees of freedom renders conventional alloy optimization by experimental trial-and-error approaches particularly challenging.
高熵合金(HEA)是一种新的合金,它是由四种以上的元素组成的金属固溶体。特别是高强度和良好的延展性以及高硬度、耐磨性和耐腐蚀性的组合使得HEAs成为高性能结构应用的有希望的候选材料。HEAs优异的抗破坏性通常归因于某种极端形式的固溶强化。然而,由于在HEAs中“每个原子都是溶质原子”,传统的固溶硬化理论不能直接应用,并且尚未建立用于分析和预测HEAs中位错运动的必要的新理论概念。该项目的目的是获得一个基本的理解如何位错滑移运动,因此在HEAs中的位错塑性,是由其独特的底层原子结构的影响,并制定一个理论框架,用于预测的应力和温度依赖的位错速度和随之而来的塑性变形行为。为此,我们提出了一个多尺度的建模方法,原子模拟用于表征能量景观中的位错移动。结果进行了分析,利用统计物理学的方法和理论概念,以确定能源景观的相关特征和空间相关性。这些信息作为输入的位错的介观模拟使用离散位错动力学(DDD)的方法,其中位错晶格相互作用的原子尺度的信息被纳入一个随机钉扎场的形式。这种原子和介观尺度模拟方法的结合允许研究由复杂的,扩展的能量障碍,这是由于位错的可能性,以调整其形状的局部钉扎能量景观的热激活位错运动。此外,蒙特卡罗模拟被用来研究如何短程扩散可以导致老化,通过改变当地的能源景观周围的位错在休息。能量的变化和相关的长度和时间尺度,然后在一个中尺度的框架,调查动态应变老化和PLC的现象,这是最近在HEAs中观察到的。最终,单相fcc HEAs模型系统的研究将有助于开发一个方法框架,使计算预测HEAs的塑性变形行为的基础上,他们的原子结构和组成。这种框架对于计算合金设计是至关重要的,这对于HEA系统是特别重要的,其中大量的组成自由度使得通过实验试错方法进行的常规合金优化特别具有挑战性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Properties of dislocation lines in crystals with strong atomic-scale disorder
强原子级无序晶体中位错线的性质
- DOI:10.1016/j.msea.2018.10.010
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:J. Zhai;M. Zaiser
- 通讯作者:M. Zaiser
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Erik Bitzek其他文献
Professor Dr.-Ing. Erik Bitzek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Erik Bitzek', 18)}}的其他基金
Influence of Topological Anisotropy on the Mechanical Properties of Silicate Glasses
拓扑各向异性对硅酸盐玻璃力学性能的影响
- 批准号:
224500468 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Monitoring the three-dimensional motion of chromatin at single molecule resolution
以单分子分辨率监测染色质的三维运动
- 批准号:
10706571 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Monitoring the three-dimensional motion of chromatin at single molecule resolution
以单分子分辨率监测染色质的三维运动
- 批准号:
10501770 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Translational Motion of Liquid Lubricants Tracked with Single Fluorophores
用单一荧光团追踪液体润滑剂的平移运动
- 批准号:
21K18935 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Measuring Nanoscale Exciton Motion & Annihilation in Single Molecules with Photon Statistics
测量纳米级激子运动
- 批准号:
EP/V004921/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Tracking the motion of single nanoparticles inside living cells: New insights into intracellular crowdedness
追踪活细胞内单个纳米粒子的运动:对细胞内拥挤度的新见解
- 批准号:
2493031 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Highly efficient magnetic domain wall motion driven by spin-orbit torque in rare-earth free single crystal nitrides.
无稀土单晶氮化物中自旋轨道扭矩驱动的高效磁畴壁运动。
- 批准号:
21J10330 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Can microsecond domain motion affect enzymatic activity? A single-molecule FRET study
微秒域运动会影响酶活性吗?
- 批准号:
490757872 - 财政年份:2021
- 资助金额:
-- - 项目类别:
WBP Fellowship
Experimental and theoretical studies on the motion of single nanoparticles under localized external forces
局部外力作用下单个纳米颗粒运动的实验和理论研究
- 批准号:
20H02067 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design and fabrication of microfluidic technology for male infertility studies: study of single-sperm flagellar motion and high-quality cell selection
用于男性不育研究的微流体技术的设计和制造:单精子鞭毛运动和高质量细胞选择的研究
- 批准号:
542409-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
How much human can reproduce their motion in water environment - an investigation with single joint -
人类在水环境中能再现多少运动——单关节的调查——
- 批准号:
19K11649 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)