Incremental Semantic Segmentation Learning

增量语义分割学习

基本信息

  • 批准号:
    21J13152
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-28 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

This research aims to improve semantic segmentation through two solutions, including the passive and active solutions. The passive solution provides the computer with a few new annotated data for new categories to make the computer able to segment the image regions of new categories. The active solution makes the computer able to discover valuable data during running and use them to improve the model.In 2021, we completed the passive solution by proposing a method named Segmentation by Dynamic Prototype (SDP). SDP does segmentation by searching each pixel's features nearest prototype in feature space. A prototype is a representative feature of a class. During running, it is dynamically constructed by a few new annotated data and old data. We submitted this work to a journal, and it is under review so far.As for the active solution, we proposed a continual active learning method for semantic segmentation. It can continually select informative images to annotate and feed them to the model to improve accuracies. But the improvement is not satisfactory so far, and we will do more research in the next.Besides, during the research, we found large redundant storage and RAM resources in cloud servers. Thus, we proposed a method named Neural Routing by Memory, which utilizes the redundant resources to improve accuracies. The work was accepted by NeurIPS 2021.
本研究旨在通过两种解决方案来改进语义分割,包括被动方案和主动方案。被动解决方案向计算机提供新类别的一些新的注释数据,以使计算机能够分割新类别的图像区域。主动解使得计算机能够在运行过程中发现有价值的数据,并利用这些数据来改进模型。2021年,我们提出了一种动态原型分割(SDP)的方法来完成被动解。SDP通过在特征空间中搜索与原型最近的每个像素的特征来进行分割。原型是类的代表性特征。在运行过程中,它是由几个新的注释数据和旧的数据动态构建的。我们将这项工作提交给了一家期刊,目前正在进行审查。对于主动解决方案,我们提出了一种连续主动学习的语义切分方法。它可以不断地选择信息丰富的图像进行注释,并将其提供给模型以提高准确性。但到目前为止,改进效果并不理想,我们将在下一步做更多的研究,此外,在研究过程中,我们发现云服务器中存在着大量的冗余存储和RAM资源。因此,我们提出了一种基于记忆的神经网络路由方法,该方法利用冗余资源来提高精度。这项工作被NeurIPS 2021接受。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Routing by Memory
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaipeng Zhang;Zhenqiang Li;Zhifeng Li;Wei Liu;Yoichi Sato
  • 通讯作者:
    Kaipeng Zhang;Zhenqiang Li;Zhifeng Li;Wei Liu;Yoichi Sato
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ZHANG KAIPENG其他文献

ZHANG KAIPENG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了