Carrier-relaxation dynamics in model crystalline organic semiconductors

模型晶体有机半导体中的载流子弛豫动力学

基本信息

项目摘要

This project is devoted to studying the relaxation dynamics in single-crystalline organic semiconductors. In particular, the relation between the molecular packing motifs and the optoelectronic response will be explored. The relaxation mechanism will be studied in three model systems perylene, pentacene, and perfluoropentacene. These prototypical small molecules all form various polymorphs of highly-ordered van.-der-Waals-bonded single crystals. On the one hand, this is of fundamental scientific interest as phenome such as delocalization of excitations and intermolecular coupling are explored. On the other hand the findings are expected to yield insights in the performance limitations of current organic optoelectronic devices as well as provide predictive capabilities towards optimized structure and materials design. Experimentally, these challenges will be addressed by polarization-resolved optical spectroscopy with high spatial resolution. The fundamental siglet and triplet-type transitions will be identified by modulated reflection and transmission spectroscopy and compared to results model calculations. In particular, the triplets ground states will become optically addressable in static external magnetic fields. Furthermore, emission spectra will be used to corroborate these findings. Time-resolve measurements help to distinguish direct-gap from indirect-gap transitions. A particular focus will be put on the microscopic mechanism of singlet-exciton fission, the conversion of one singlet-type exciton into two triplet states. And explore the efficiency of selective intersystem crossing. Furthermore, I will explore the role of enhanced next-neighbour coupling resulting in, e.g., excimer formation. And the related distortion of the crystalline lattice through the formation of this correlated molecule-pair excited state. Therefore, the individual molecules will be selectively changes by perfluorination or deuteration.
本项目致力于研究单晶有机半导体的弛豫动力学。特别是,分子堆积模体和光电响应之间的关系将被探索。将在三个模型体系中研究它们的松弛机制,分别是茂、并五苯和全氟戊烯。这些典型的小分子都形成了各种晶型的高度有序的van.der-Waals键合单晶。一方面,随着对激发离域和分子间耦合等现象的研究,这具有重要的科学意义。另一方面,这些发现有望深入了解当前有机光电子器件的性能限制,并为优化结构和材料设计提供预测能力。在实验上,这些挑战将通过高空间分辨率的偏振分辨光学光谱来解决。基本的siglet和triplet类型的跃迁将通过调制的反射和透射谱进行识别,并与结果模型计算进行比较。具体地说,在静态外部磁场中,三重态基态将变得可光学寻址。此外,发射光谱将被用来证实这些发现。时间分辨测量有助于区分直接间隙过渡和间接间隙过渡。我们将特别关注单重态激子裂变的微观机制,即一个单重态激子转变为两个三重态。并探讨了选择性系统间杂交的效率。此外,我将探索增强的近邻耦合的作用,例如,导致准分子的形成。以及通过形成这种相关的分子对激发态而引起的晶格的相关扭曲。因此,单个分子将通过全氟化或氢化有选择地改变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sangam Chatterjee其他文献

Professor Dr. Sangam Chatterjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sangam Chatterjee', 18)}}的其他基金

Optical Spectroscopy
光谱学
  • 批准号:
    442826931
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants
Optical Spectroscopy
光谱学
  • 批准号:
    288178675
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
Project B1: Optical Spectroscopy of Condensed-Phase (Hetero-) Diamondoid Systems
项目 B1:凝聚相(异质)金刚石体系的光学光谱
  • 批准号:
    418864790
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Directed evolution of broadly fungible biosensors
广泛可替代生物传感器的定向进化
  • 批准号:
    10587024
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Role of Intermediate Conformations in G Protein-coupled Receptor Signaling
中间构象在 G 蛋白偶联受体信号传导中的作用
  • 批准号:
    10635763
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biological Magnetic Resonance Data Bank
生物磁共振数据库
  • 批准号:
    10714470
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Skeletal muscle protein structural dynamics and function drive applications to drug discovery
骨骼肌蛋白结构动力学和功能驱动药物发现的应用
  • 批准号:
    10650572
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biophysical Model of Enzyme Catalysis: Conformational sub-states, solvent coupling and energy networks
酶催化的生物物理模型:构象亚态、溶剂耦合和能量网络
  • 批准号:
    10735359
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Structural Biology and Biophysics of Alpha-Synuclein Fibrils by Solid-State NMR
通过固态核磁共振研究 α-突触核蛋白原纤维的结构生物学和生物物理学
  • 批准号:
    10605819
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of photo-relaxation dynamics and photophysical properties of cupper(I) multinuclear coordination polymers with thermally activated delayed fluorescence
热激活延迟荧光阐明铜(I)多核配位聚合物的光弛豫动力学和光物理性质
  • 批准号:
    23K04765
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Blunting of the Myofilament Beta-Adrenergic Response in HCM: Structural-Dynamic Mechanisms
HCM 中肌丝 β 肾上腺素反应的钝化:结构动力学机制
  • 批准号:
    10748921
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Constraining rupture and relaxation dynamics of crustal fault roots with geodetic and microseismic observations
利用大地测量和微地震观测约束地壳断层根部的破裂和松弛动力学
  • 批准号:
    2221569
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
  • 批准号:
    10521825
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了