The Transfer Principle of Integral Geometry and Isoperimetric Inequalities

积分几何传递原理与等周不等式

基本信息

  • 批准号:
    289866435
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

One of the most remarkable insights of classical integral geometry is the transfer principle of Howard, which allows certain kinematic formulas to be transferred verbatim between riemannian homogeneous spaces provided that the spaces have the same dimension and isomorphic isotropy groups. Thus, for example, the classical integral geometric formulas of euclidean space can be easily transferred to the sphere and hyperbolic space. The pioneering work of Alesker in the theory of valuations is the starting point for the latest developments in integral geometry. Very recently it was shown that the constants occurring in integral geometric formulas are nothing but structure constants of algebras of invariant valuations. Within the framework of Alesker's theory of valuations on manifolds Howard's transfer principle turns into the conjecture that under certain conditions the algebras of invariant valuations are isomorphic. Bernig, Fu and Solanes have confirmed this for complex space forms. One focus of this project is the investigation of the conjectured transfer principle. In particular, its validity for exceptional isotropic spaces will be examined. Classical integral geometry is closely linked to the study of geometric variational problems and isoperimetric inequalities for the intrinsic volumes or quermassintegrals. These inequalities and the fundamental Aleksandrov-Fenchel inequalities have applications in and links to numerous branches of mathematics. In low dimensions, some of these inequalities follow even directly from the kinematic formulas. The rapid development of integral geometry in recent years and, in particular, the complete determination of the kinematic formulas in complex space forms, have paved the way for the discovery of new (and potentially very useful) inequalities in complex vector spaces. The previously discovered inequalities seem to be only the tip of the iceberg. Another aim of the project is the systematic investigation and discovery of new isoperimetric inequalities in complex vector spaces.
经典积分几何最引人注目的见解之一是霍华德的传递原理,它允许某些运动学公式在黎曼齐次空间之间逐字传递,前提是这些空间具有相同的维度和同构各向同性群。因此,例如,欧氏空间的经典积分几何公式可以很容易地转移到球面和双曲空间。阿莱斯克在估价理论方面的开创性工作是积分几何最新发展的起点。最近,人们发现积分几何公式中出现的常数只不过是不变估值代数的结构常数。在阿莱斯克流形估值理论的框架内,霍华德的转移原理转化为在一定条件下不变估值的代数是同构的猜想。 Bernig、Fu 和 Solanes 已经针对复杂的空间形式证实了这一点。该项目的重点之一是对猜想转移原理的研究。特别是,将检查其对于特殊各向同性空间的有效性。经典积分几何与几何变分问题和内在体积或克马斯积分的等周不等式的研究密切相关。这些不等式和基本的 Aleksandrov-Fenchel 不等式在数学的许多分支中都有应用并与之相关。在低维度中,其中一些不等式甚至可以直接从运动学公式得出。近年来积分几何的快速发展,特别是复杂空间形式中运动学公式的完整确定,为发现复杂向量空间中新的(并且可能非常有用的)不等式铺平了道路。先前发现的不平等似乎只是冰山一角。该项目的另一个目标是系统地研究和发现复杂向量空间中新的等周不等式。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the extendability by continuity of angular valuations on polytopes
  • DOI:
    10.1016/j.jfa.2020.108665
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Thomas Wannerer
  • 通讯作者:
    Thomas Wannerer
Riemannian curvature measures
黎曼曲率测量
  • DOI:
    10.1007/s00039-019-00484-6
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    J.H.G. Fu;T. Wannerer
  • 通讯作者:
    T. Wannerer
Integral geometry of exceptional spheres
特殊球体的整体几何
Octonion-Valued Forms and the Canonical 8-Form on Riemannian Manifolds with a Spin(9)-Structure
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thomas Wannerer其他文献

Professor Dr. Thomas Wannerer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thomas Wannerer', 18)}}的其他基金

Curvature Measures in Convex and Integral Geometry
凸几何和积分几何中的曲率测量
  • 批准号:
    442235491
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
  • 批准号:
    24K04051
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scientific principle construction of two-dimensional liquid with broken inversion symmetry
反演对称性破缺二维液体的科学原理构建
  • 批准号:
    23K17366
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
  • 批准号:
    23K17776
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The Fault Principle: Foundations and Content
过错原则:基础和内容
  • 批准号:
    23KJ1551
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study for reformation of the hearsay exceptions based on the best evidence principle
基于最佳证据原则的传闻证据例外改革研究
  • 批准号:
    23K01149
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the computational principle of visual objects
理解视觉对象的计算原理
  • 批准号:
    23H03698
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The principle of rapid cooling - What determines the quenching?
快速冷却的原理——什么决定了淬火?
  • 批准号:
    23H01357
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
  • 批准号:
    2247709
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The operating principle of the developmental timer that controls the timing of tissue formation
控制组织形成时间的发育计时器的工作原理
  • 批准号:
    23K05785
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了