Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
基本信息
- 批准号:21K03292
- 负责人:
- 金额:$ 2.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research activities can be summarized as follows:1) The investigations with H. Inoue on scattering theory and an index theorem on the radial part of SL(2,R) have been completed and a manuscript submitted. It is the first application of Levinson's theorem in group representations, and involves numerous special functions.2) The two works with T. Miyoshi and Q. Sun have been completed, submitted for publication, and one has been published, the other one accepted. These works involve data assimilation techniques and have been developed because of the restrictions due to the COVID-19 pandemic.3) The investigations on surface states have been the main topic for this FY and the work is nearly completed. D. Parra and A. Rennie have joined the team for this project. A manuscript will probably be submitted in Spring 2023.4) A new research project has started with A. Rennie about 2D Schroedinger operators with exceptional singularities at 0 energy. The initial problem involves a very singular integral kernel, and it is expected that the solution will involve a product of special functions.5) A new project on Mourre theory and some propagation estimates has started during the stay of N. Boussaid in Nagoya in Fall 2022. Preliminary results are promising, but further investigations are necessary.
主要研究内容如下:1)以H.井上关于散射理论和SL(2,R)径向部分的指数定理已经完成并提交了手稿。这是列文森定理在群表示中的第一个应用,涉及到许多特殊的函数。Miyoshi和Q.孙有完成,提交出版,一个已经出版,另一个接受。这些工作涉及数据同化技术,并因COVID-19大流行而受到限制。3)地表状态调查是本财年的主要课题,工作已接近完成。D. Parra和A. Rennie加入了这个项目的团队。手稿可能会在2023年春季提交。4)一个新的研究项目已经开始与A。Rennie关于在0能量下具有特殊奇异性的2D Schroedinger算子。初始问题涉及一个非常奇异的积分核,预计解将涉及一个特殊函数的乘积。5)在N. 2022年秋季在名古屋的Boussaid。初步结果是有希望的,但需要进一步调查。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decay Estimates for Unitary Representations with Applications to Continuous- and Discrete-Time Models
酉表示的衰减估计及其在连续和离散时间模型中的应用
- DOI:10.1007/s00023-022-01199-5
- 发表时间:2022
- 期刊:
- 影响因子:1.5
- 作者:S. Richard;R. Tiedra de Aldecoa
- 通讯作者:R. Tiedra de Aldecoa
Theorie de la diffusion et un theoreme d'indice sur la partie radiale de SL(2,R)
扩散理论和 SL(2,R) 径向方指数定理
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Matsuoka Katsuo;Mizuta Yoshihiro;Shimomura Tetsu;松谷茂樹;Serge Richard
- 通讯作者:Serge Richard
Scattering theory and an index theory theorem on the radial part of SL(2,R)
SL(2,R)径向部分的散射理论和指数理论定理
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mizuta Yoshihiro;Shimomura Tetsu;松谷茂樹;Serge Richard
- 通讯作者:Serge Richard
Scattering theory and an index theorem on the radial part of SL(2,R)
SL(2,R)径向部分的散射理论和指数定理
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ohno Takao;Shimomura Tetsu;Serge Richard
- 通讯作者:Serge Richard
Spectral and scattering theory for topological crystals perturbed by infinitely many new edges
受无限多新边扰动的拓扑晶体的光谱和散射理论
- DOI:10.1142/s0129055x22500106
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:S. Richard;N. Tsuzu
- 通讯作者:N. Tsuzu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Serge其他文献
Richard Serge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Serge', 18)}}的其他基金
Index theorems in scattering theory: beyond a finite number of bound states
散射理论中的指数定理:超越有限数量的束缚态
- 批准号:
18K03328 - 财政年份:2018
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing crystal defects with scattering theory and non-commutative topology
用散射理论和非交换拓扑探测晶体缺陷
- 批准号:
26707005 - 财政年份:2014
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
相似海外基金
Collaborative Research: Special Functions for Diagonal Harmonics and Schubert Calculus
合作研究:对角谐波和舒伯特微积分的特殊函数
- 批准号:
2154282 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Continuing Grant
study will follow the work of Dr Clare Dunning and Professor Peter Clarkson on orthogonal polynomials and special functions.
这项研究将遵循克莱尔·邓宁博士和彼得·克拉克森教授在正交多项式和特殊函数方面的工作。
- 批准号:
2876144 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Studentship
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
- 批准号:
RGPIN-2017-03892 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Discovery Grants Program - Individual
Old and New, and many things in-between: Perspectives on theoretical physics and special functions
新旧,以及介于两者之间的许多事物:理论物理和特殊函数的观点
- 批准号:
DDG-2022-00011 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Discovery Development Grant
Elucidation of evolutionary and molecular basis of animal special functions based on genome information and its application to highly functional sensors
基于基因组信息阐明动物特殊功能的进化和分子基础及其在高功能传感器中的应用
- 批准号:
22K19097 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Special Functions for Diagonal Harmonics and Schubert Calculus
合作研究:对角谐波和舒伯特微积分的特殊函数
- 批准号:
2154281 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Continuing Grant
Advanced Special Functions and Symbolic Computation
高级特殊函数和符号计算
- 批准号:
574656-2022 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
University Undergraduate Student Research Awards
Developing Special Functions tools for contemporary problems in physics
为当代物理学问题开发特殊函数工具
- 批准号:
RGPIN-2016-03728 - 财政年份:2021
- 资助金额:
$ 2.66万 - 项目类别:
Discovery Grants Program - Individual
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
- 批准号:
RGPIN-2017-03892 - 财政年份:2021
- 资助金额:
$ 2.66万 - 项目类别:
Discovery Grants Program - Individual
Sequences and special functions in number theory and combinatorics
数论和组合学中的序列和特殊函数
- 批准号:
RGPIN-2017-05144 - 财政年份:2021
- 资助金额:
$ 2.66万 - 项目类别:
Discovery Grants Program - Individual