Pathwise numerics and dynamics of stochastic evolution equations

随机演化方程的路径数值和动力学

基本信息

项目摘要

Every finite dimensional Ito stochastic differential equation can be transformed into a pathwise random ordinary differential equation, which means that many dynamical properties can be investigated pathwise and numerical calculations can not only be carried out but also compared pathwise. The aim of this joint proposal is to investigate if such a pathwise equivalence also holds for stochastic evolution equations, in particular for semilinear parabolic stochastic partial differential equations and to exploit it in the context of dynamics and numerics.
每个有限维的Ito随机微分方程都可以转化为路径随机常微分方程,这意味着许多动力学性质可以路径地研究,数值计算不仅可以进行路径比较,而且还可以进行路径比较。这个联合方案的目的是研究这种路径等价是否也适用于随机发展方程,特别是半线性抛物型随机偏微分方程组,并在动力学和数值的背景下利用它。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inertial manifolds for stochastic pde with dynamical boundary conditions
Ergodicity of the Infinite Dimensional Fractional Brownian Motion
Random Dynamics of the Boussinesq System with Dynamical Boundary Conditions
  • DOI:
    10.1080/07362990902976546
  • 发表时间:
    2009-08
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Peter Brune;Jinqiao Duan;B. Schmalfuß
  • 通讯作者:
    Peter Brune;Jinqiao Duan;B. Schmalfuß
Global attractor for a non-autonomous integro-differential equation in materials with memory
  • DOI:
    10.1016/j.na.2010.03.012
  • 发表时间:
    2010-07
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    T. Caraballo;M. Garrido-Atienza;B. Schmalfuß;J. Valero
  • 通讯作者:
    T. Caraballo;M. Garrido-Atienza;B. Schmalfuß;J. Valero
RANDOM ATTRACTORS FOR STOCHASTIC EQUATIONS DRIVEN BY A FRACTIONAL BROWNIAN MOTION
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Peter E. Kloeden其他文献

Professor Dr. Peter E. Kloeden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Peter E. Kloeden', 18)}}的其他基金

Non-autonomous set-valued dynamical processes: Asymptotics and applications
非自治集值动态过程:渐近学和应用
  • 批准号:
    169166715
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
  • 批准号:
    RGPIN-2018-04834
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
  • 批准号:
    2121366
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
  • 批准号:
    2121367
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Analysis and Numerics for the Dynamics of Fluids under Magnetic Forces
职业:磁力下流体动力学的分析和数值模拟
  • 批准号:
    2042454
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
  • 批准号:
    RGPIN-2018-04834
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Shape Dynamics of Vortices: Theory and Numerics
涡旋形状动力学:理论与数值
  • 批准号:
    2006736
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
  • 批准号:
    RGPIN-2018-04834
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
  • 批准号:
    RGPIN-2018-04834
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
  • 批准号:
    522592-2018
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
  • 批准号:
    522592-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了