Electrical and electrochemical observation of direct synthesis of hydrogen peroxide in suspension flow micro reactors

悬浮流微型反应器直接合成过氧化氢的电学和电化学观察

基本信息

项目摘要

The aim of this project is to gain deeper understanding of the details of the local reaction and transport processes taking place inside a novel membrane microreactor system for multiphase heterogeneously catalysed chemical reactions. This is achieved by use of novel miniaturised sensors integrated in the system combined with space and time-resolved numerical simulations. The direct synthesis of hydrogen peroxide from hydrogen and oxygen on palladium-based supported noble metal catalysts has been selected as an application case. This reaction is currently a topic of high interest in catalysis, and it is also well suited for being performed in microreaction systems. For this application, a strategy for adjusting the hydrogen to oxygen concentration ratio in order to decrease in the direction of flow in the membrane microreactor has ben developed in the previous project, which shall now be put in practice and evaluated together with an improved reactor design relying on catalyst-coated thin-walled metallic 3D-printed fluid guiding structures. For space and time-resolved measurement of the concentrations in real time electrochemical sensors have already been developed and successfully integrated into the reactor for pressures up to 100 bars in the previous project. The micro reactor system also includes a membrane for bubble-free dosage of both gaseous reactants directly into the reaction medium flowing along an adjacent meander-like micro channel system. This way of conducting the reaction offers the potential for safe operation of the microreactor system with, at the same time, high selectivity and productivity. This is because the concentration ratio of hydrogen versus oxygen can be adjusted to an optimal value for the catalysed reaction even locally by separate alternating continuous dosing of the two reactants via the membrane. This shall be proven experimentally and also be reproduced quantitatively by simulation. This will also require further improvements of the sensors regarding the detectable concentration range and the applicable reaction media. As a perspective, the knowledge generated shall be used for development of a new intensified technology for efficient and cost-effective local production of hydrogen peroxide as a green oxidant for chemical applications.
本项目的目的是获得更深入的了解的局部反应和运输过程中发生的多相非均相催化化学反应的新型膜微反应器系统内的细节。这是通过使用集成在系统中的新型传感器,结合空间和时间分辨的数值模拟来实现的。以钯基负载贵金属催化剂为催化剂,氢气和氧气直接合成过氧化氢为应用实例。该反应是目前催化领域的一个热门话题,也非常适合在微反应体系中进行。对于该应用,在先前的项目中已经开发了一种用于调整氢氧浓度比以降低膜微反应器中的流动方向的策略,该策略现在将与依赖于催化剂涂覆的薄壁金属3D打印流体引导结构的改进的反应器设计一起付诸实践和评估。为了在真实的时间内对浓度进行空间和时间分辨的测量,已经开发了电化学传感器,并在之前的项目中成功地集成到压力高达100 bar的反应器中。该微反应器系统还包括用于将两种气态反应物无气泡地直接加入沿沿着相邻的曲折状微通道系统流动的反应介质中的膜。这种进行反应的方式为微反应器系统的安全操作提供了可能性,同时具有高选择性和生产率。这是因为氢与氧的浓度比甚至可以通过经由膜分开交替连续定量给料两种反应物而局部地调节到催化反应的最佳值。这应通过实验证明,并通过模拟定量再现。这还需要进一步改进传感器的可检测浓度范围和适用的反应介质。作为一种观点,所产生的知识将用于开发一种新的强化技术,以高效和具有成本效益的方式在当地生产过氧化氢,作为化学应用的绿色氧化剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Roland Dittmeyer其他文献

Professor Dr.-Ing. Roland Dittmeyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Roland Dittmeyer', 18)}}的其他基金

Coordination Funds
协调基金
  • 批准号:
    428795801
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    295807775
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Units
Dampfgetragene Wirkstoffpartikel und deren Überführung in wässrige Nanosuspensionen
蒸汽传播的活性成分颗粒及其向水性纳米悬浮液的转移
  • 批准号:
    193336365
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bifunctional hierarchically-structured porous layered systems for efficient one-step conversion of synthesis gas to fuels in microstructured reactors
双功能分级结构多孔层状系统,用于在微结构反应器中将合成气高效一步转化为燃料
  • 批准号:
    206052329
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Selektivoxidation von Benzol zu Phenol durch in situ gebildetes Wasserstoffperoxid im Doppelmembran-Mikrostrukturreaktor
双膜微结构反应器中原位形成的过氧化氢选择性氧化苯生成苯酚
  • 批准号:
    31785111
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung und Charakterisierung von Zeolith/Edelstahl-Verbundmembranen für Stofftrennung und Reaktionsführung
用于材料分离和反应控制的沸石/不锈钢复合膜的开发和表征
  • 批准号:
    5207295
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung und Charakterisierung von Zeolith/Edelstahl-Verbundmembranen für Stofftrennung und Reaktionsführung
用于材料分离和反应控制的沸石/不锈钢复合膜的开发和表征
  • 批准号:
    5207288
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Katalytisch modifizierte Materialien für die interne Reformierung von Kohlenwasserstoffen in der Hochtemperatur-Brennstoffzelle
用于高温燃料电池中碳氢化合物内部重整的催化改性材料
  • 批准号:
    5200088
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

电极/溶液界面上分子取向电位调控的准确测量
  • 批准号:
    20373076
  • 批准年份:
    2003
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Electrochemical Profiling of Extracellular Vesicles (EP4EVs)
细胞外囊泡 (EP4EV) 的电化学分析
  • 批准号:
    EP/Y002458/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: CAS: An Electrochemical Approach for Catalytic Dehydration
职业:CAS:催化脱水的电化学方法
  • 批准号:
    2339405
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
  • 批准号:
    2405325
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Unlocking the potential of poly(ionic liquids) for electrochemical sensing
释放聚(离子液体)电化学传感的潜力
  • 批准号:
    DP240100014
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
  • 批准号:
    10110221
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了