Radio Resource Management in 5G and Beyond Networks: A Layered In-network Learning Approach
5G 及其他网络中的无线电资源管理:分层网络内学习方法
基本信息
- 批准号:20K11764
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2020
- 资助国家:日本
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In FY2022, we investigate the practical global model update process in wireless networks by proposing a robust asynchronized computing and communication process. Specifically, we proposed to decouple the computing and communication processes, and let the edge server use a subset of asynchronized local gradients to update the global model. We proved the algorithm’s convergence and evaluated its performance by simulations.
在2022财年,我们通过提出稳健的简化计算和通信流程,研究无线网络中的实际全局模型更新流程。具体来说,我们提出将计算和通信过程解耦,并让边缘服务器使用局部梯度的子集来更新全局模型。我们证明了算法的收敛性,并通过仿真评估其性能。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wireless Access Control in Edge-Aided Disaster Response: A Deep Reinforcement Learning-Based Approach
- DOI:10.1109/access.2021.3067662
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Hang Zhou;Xiaoyan Wang;M. Umehira;Xianfu Chen;Celimuge Wu;Yusheng Ji
- 通讯作者:Hang Zhou;Xiaoyan Wang;M. Umehira;Xianfu Chen;Celimuge Wu;Yusheng Ji
Deep reinforcement learning based secondary user transmit power control for underlay cognitive radio networks
- DOI:10.1145/3538641.3561484
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Kouhei Katou;Xiaoyan Wang;M. Umehira;Yusheng Ji
- 通讯作者:Kouhei Katou;Xiaoyan Wang;M. Umehira;Yusheng Ji
When Vehicular Fog Computing Meets Autonomous Driving: Computational Resource Management and Task Offloading
- DOI:10.1109/mnet.001.1900527
- 发表时间:2020-11
- 期刊:
- 影响因子:9.3
- 作者:Zhenyu Zhou;Haijun Liao;Xiaoyan Wang;S. Mumtaz;Jonathan Rodriguez
- 通讯作者:Zhenyu Zhou;Haijun Liao;Xiaoyan Wang;S. Mumtaz;Jonathan Rodriguez
Asynchronous Federated Deep Reinforcement Learning-Based URLLC-Aware Computation Offloading in Space-Assisted Vehicular Networks
- DOI:10.1109/tits.2022.3150756
- 发表时间:2022-02-24
- 期刊:
- 影响因子:8.5
- 作者:Pan, Chao;Wang, Zhao;Al-Otaibi, Sattam
- 通讯作者:Al-Otaibi, Sattam
Deep Reinforcement Learning based Access Control for Disaster Response Networks
- DOI:10.1109/globecom42002.2020.9322553
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Hang Zhou;Xiaoyan Wang;M. Umehira;Xianfu Chen;Celimuge Wu;Yusheng Ji
- 通讯作者:Hang Zhou;Xiaoyan Wang;M. Umehira;Xianfu Chen;Celimuge Wu;Yusheng Ji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
王 瀟岩其他文献
MAC Layer Design and Analysis for Cooperative Communications in Wireless Networks
- DOI:
- 发表时间:
2013-11 - 期刊:
- 影响因子:0
- 作者:
王 瀟岩 - 通讯作者:
王 瀟岩
王 瀟岩的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('王 瀟岩', 18)}}的其他基金
An Efficient Split In-network Learning Approach for Resource Constrained Wireless Networks
资源受限无线网络的高效分割网内学习方法
- 批准号:
23K11080 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
- 批准号:
24K20845 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
- 批准号:
24K20781 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Private Blockchain-Enabled Federated Learning Framework for Distributed Manufacturing Networks
EAGER:支持私有区块链的分布式制造网络联合学习框架
- 批准号:
2420964 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Standard Grant
Causal Knowledge-Empowered Adaptive Federated Learning
因果知识赋能的自适应联邦学习
- 批准号:
DP240102088 - 财政年份:2024
- 资助金额:
$ 2.75万 - 项目类别:
Discovery Projects
CAREER: Trustworthy and Robust Federated Learning for Computational Healthcare
职业:用于计算医疗保健的值得信赖且强大的联邦学习
- 批准号:
2238743 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Continuing Grant