A Generalised Approach to Learning Models of Human Behaviour for Activity Recognition from Textual Instructions
从文本指令进行活动识别的人类行为学习模型的通用方法
基本信息
- 批准号:314457946
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational models for activity recognition aim at recognising the user actions and goals based on precondition-effect rules. One problem such approaches face, is how to obtain the model structure. To reduce the need of domain experts or sensor data during the model building, methods for learning models of human behaviour from textual data have been investigated. Existing approaches, however, make various simplifying assumptions during the learning process. This renders the model inapplicable for activity recognition problems. To address this problem, this project aims at developing a generalised methodology for learning the model structure from textual instructions. The methodology shall combine existing and novel methods for model learning.- A methodology for extracting the action semantics from text shall be developed. The methodology shall address the challenge of identifying causal relations between elements in texts with short and simple sentence structure.- To ensure the model generalisation and the incorporation of context information, methods for ontology learning shall be investigated. A core challenge here is the ontology extension based on causal, spatial, and functional properties of the entities in the problem domain.- To learn the model semantics, methods for language grounding shall be investigated. The semantics shall be represented in terms of precondition-effect rules. The resulting methodology shall address the issues associated with learning these rules and translating them into an appropriate for activity recognition format. It shall also address the problem of learning an optimal model through reinforcement learning methods.- To evaluate the methodology, the learned models shall be applied to various activity recognition tasks and their performance compared to that of handcrafted models.If successful, the methodology will reduce the time and resources needed for developing computational models of human behaviour for activity recognition.
活动识别的计算模型旨在基于前提-效果规则来识别用户行为和目标。这种方法面临的一个问题是如何获得模型结构。为了减少模型构建过程中对领域专家或传感器数据的需求,人们研究了从文本数据学习人类行为模型的方法。然而,现有方法在学习过程中做出了各种简化假设。这使得该模型不适用于活动识别问题。为了解决这个问题,该项目旨在开发一种从文本指令中学习模型结构的通用方法。该方法应结合现有的和新颖的模型学习方法。 - 应开发一种从文本中提取动作语义的方法。该方法应解决识别短句结构文本中元素之间因果关系的挑战。 - 为了确保模型泛化和上下文信息的纳入,应研究本体学习方法。这里的一个核心挑战是基于问题域中实体的因果、空间和功能属性的本体扩展。-为了学习模型语义,应研究语言基础的方法。语义应以前提-效果规则表示。由此产生的方法应解决与学习这些规则并将其转化为适合活动识别格式相关的问题。它还应解决通过强化学习方法学习最佳模型的问题。-为了评估该方法,学习的模型应应用于各种活动识别任务及其与手工模型相比的性能。如果成功,该方法将减少开发用于活动识别的人类行为计算模型所需的时间和资源。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Detection of Everyday Social Behaviours and Environments from Verbatim Transcripts of Daily Conversations
- DOI:10.1109/percom.2019.8767403
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Kristina Yordanova;Burcu Demiray;M. Mehl;Mike Martin
- 通讯作者:Kristina Yordanova;Burcu Demiray;M. Mehl;Mike Martin
Analysing Cooking Behaviour in Home Settings: Towards Health Monitoring †
- DOI:10.3390/s19030646
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Kristina Yordanova;S. Lüdtke;Samuel Whitehouse;Frank Krüger;A. Paiement;M. Mirmehdi;I. Craddock;T. Kirste
- 通讯作者:Kristina Yordanova;S. Lüdtke;Samuel Whitehouse;Frank Krüger;A. Paiement;M. Mirmehdi;I. Craddock;T. Kirste
Extracting Planning Operators from Instructional Texts for Behaviour Interpretation
- DOI:10.1007/978-3-030-00111-7_19
- 发表时间:2018-09
- 期刊:
- 影响因子:6.1
- 作者:Kristina Yordanova
- 通讯作者:Kristina Yordanova
Automatic Generation of Situation Models for Plan Recognition Problems
- DOI:10.26615/978-954-452-049-6_105
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Kristina Yordanova
- 通讯作者:Kristina Yordanova
Knowledge Extraction from Task Narratives
- DOI:10.1145/3134230.3134234
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Kristina Yordanova;Carlos Monserrat Aranda;David Nieves;J. Hernández-Orallo
- 通讯作者:Kristina Yordanova;Carlos Monserrat Aranda;David Nieves;J. Hernández-Orallo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Kristina Yordanova其他文献
Professorin Dr.-Ing. Kristina Yordanova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr.-Ing. Kristina Yordanova', 18)}}的其他基金
BehavE: Behaviour Understanding through Situation Models for Situation-aware AssistancE
行为:通过情境模型理解行为以提供情境感知援助
- 批准号:
433339426 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring "Actionable Information" for Learning Improvement in Rural East Africa: A Positive Deviance Approach
探索东非农村地区学习改进的“可行信息”:积极偏差方法
- 批准号:
24K00390 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
- 批准号:
2345097 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Interactions between learning and non-learning plasticity in the beadlet sea anenome Actinia equina: A multidimensional reaction norm approach.
珠状海葵海葵中学习和非学习可塑性之间的相互作用:一种多维反应规范方法。
- 批准号:
BB/Y002474/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Doctoral Dissertation Research: Predicting the location of hominin cave fossil sites with a machine learning approach
博士论文研究:利用机器学习方法预测古人类洞穴化石遗址的位置
- 批准号:
2341328 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
- 批准号:
2423762 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Advancing AI in Science Education (AASE): A Comprehensive Approach to Equity, Inclusion, and Three-Dimensional Learning
会议:推进科学教育中的人工智能 (AASE):公平、包容和三维学习的综合方法
- 批准号:
2332964 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
HSI Pilot Project: Applying a Research-Based Learning Approach to Enhance Biomanufacturing Skills
HSI 试点项目:应用基于研究的学习方法来提高生物制造技能
- 批准号:
2345033 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




