Plastic-Crystalline Solid-State Electrolytes
塑料结晶固态电解质
基本信息
- 批准号:315230498
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electrolyte materials with high ionic conductivity are essential for various energy-storage and -conversion devices, e.g., batteries, fuel cells or supercapacitors. The non-continuous nature of solar and wind energy and the future success of electromobility require significant advances in energy-storage technologies. Thus, finding better electrolytes is one key factor for ensuring a sustainable energy supply of tomorrow. The latest development in this field, to be pursued in this project, are so-called plastic crystals, doped with salts to introduce ionic charge carriers. The molecules in plastic crystals can freely reorient which, via a "revolving door" like mechanism, is believed to be the reason for the surprisingly high ionic conductivity of some members of this material class. Plastic crystals are solid-state electrolytes and thus have invaluable advantages compared to the ubiquitous liquid electrolytes used in current battery technology. However, further optimisation of their properties is needed to make them ready for application. Recently our group found a tremendous increase of the conductivity in the best plastic-crystal electrolyte known so far, when mixing this material with another, related compound consisting of larger molecules. We believe that this effect, which can be well understood within the "revolving door" framework, is the key to make plastic crystals suitable for applications in energy devices. Within this project, we want to further explore this new path towards better solid-state electrolyte materials. For this purpose, we plan to investigate the properties of various mixed plastic-crystalline systems belonging to different material classes with different concentrations and types of admixed salts. We will use dielectric spectroscopy, supplemented by differential scanning calorimetry (DSC) and cyclic voltammetry to characterize the samples. Aside of revealing precise information on the intrinsic electrical conductivity, dielectric spectroscopy is ideally suited to investigate the microscopic mechanisms of ionic charge transport in plastic crystals as it is sensitive to both the reorientational motions of the molecules and the translational motions of the ions, which are believed to be closely coupled. One goal of this project is achieving a better understanding of the involved microscopic charge-transport mechanisms in plastic crystals. Moreover, we want to find ways to optimize their ionic conductivity aiming at conductivities sufficiently high for application.
具有高离子导电性的电解液材料是蓄电池、燃料电池、超级电容器等各种储能和转换设备的必备材料。太阳能和风能的非连续性以及电动汽车的未来成功需要在储能技术方面取得重大进展。因此,找到更好的电解液是确保明天可持续能源供应的关键因素之一。在这个项目中,这一领域的最新进展是所谓的塑料晶体,它掺入盐以引入离子电荷载流子。塑料晶体中的分子可以自由地重新定向,这被认为是这种材料类别的一些成员具有令人惊讶的高离子传导性的原因。塑料晶体是固态电解液,因此与当前电池技术中普遍使用的液体电解液相比,具有不可估量的优势。然而,需要进一步优化它们的性能,使其为应用做好准备。最近,我们的团队发现,当将这种材料与另一种由更大分子组成的相关化合物混合时,在迄今已知的最好的塑料晶体电解液中,电导率有了巨大的提高。我们认为,这种效应是使塑料晶体适合应用于能源设备的关键,这种效应可以在“旋转门”框架内得到很好的理解。在这个项目中,我们希望进一步探索这条通往更好的固态电解质材料的新途径。为此,我们计划研究属于不同材料类别、不同浓度和类型的混合盐的各种塑料-晶体混合体系的性质。我们将使用介电光谱,辅之以差示扫描量热法(DSC)和循环伏安法来表征样品。除了揭示关于本征电导率的精确信息外,介电光谱非常适合于研究塑料晶体中离子电荷传输的微观机制,因为它对分子的重定向运动和离子的平移运动都很敏感,这两个运动被认为是紧密耦合的。这个项目的目标之一是更好地了解塑料晶体中涉及的微观电荷传输机制。此外,我们还希望找到优化其离子导电性的方法,以使其导电率足够高,以便应用。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures.
- DOI:10.1063/1.5110404
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:D. Reuter;P. Lunkenheimer;A. Loidl
- 通讯作者:D. Reuter;P. Lunkenheimer;A. Loidl
Ionic conductivity of deep eutectic solvents: the role of orientational dynamics and glassy freezing.
- DOI:10.1039/c9cp00742c
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:D. Reuter;C. Binder;P. Lunkenheimer;A. Loidl
- 通讯作者:D. Reuter;C. Binder;P. Lunkenheimer;A. Loidl
Variation of ionic conductivity in a plastic-crystalline mixture.
- DOI:10.1063/1.5001946
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:D. Reuter;C. Geiss;P. Lunkenheimer;A. Loidl
- 通讯作者:D. Reuter;C. Geiss;P. Lunkenheimer;A. Loidl
Importance of reorientational dynamics for the charge transport in ionic liquids
重新取向动力学对于离子液体中电荷传输的重要性
- DOI:10.1103/physreve.98.052605
- 发表时间:2018
- 期刊:
- 影响因子:2.4
- 作者:P. Sippel;S. Krohns;D. Reuter;P. Lunkenheimer;A. Loidl
- 通讯作者:A. Loidl
Charge transport by global protonic conductivity and relaxational dynamics over hydrogen bonds in Fe2+Fe3+3.2(Mn2+,Zn)0.8(PO4)3(OH)4.2(HOH)0.8
Fe2 Fe3 3 2(Mn2 ,Zn)0 8(PO4)3(OH)4 2(HOH)0 8 中氢键的整体质子电导率和弛豫动力学的电荷传输
- DOI:10.1016/j.ssi.2020.115240
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:M. Winkler;P. Lunkenheimer;A. Loidl;S.-H. Park;B. Röska;M. Hoelzel
- 通讯作者:M. Hoelzel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Peter Lunkenheimer其他文献
Privatdozent Dr. Peter Lunkenheimer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Preparation of crystalline-glass films through surface super activation and their applications to all-solid-state batteries
表面超活化制备结晶玻璃薄膜及其在全固态电池中的应用
- 批准号:
23H02044 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Baird's Polycyclic Anti-Aromatic Chromophores & Application to Engineer Crystalline Dyads for Photon Upconversion in the Solid State
职业生涯:贝尔德的多环反芳香族发色团
- 批准号:
2211296 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Moldable, self-healing, highly conductive organic co-crystalline solid electrolytes for safer lithium ion batteries
可成型、自修复、高导电性有机共晶固体电解质,用于更安全的锂离子电池
- 批准号:
2138432 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of Co-catalysts for Artificial Photosynthesis Based on Quantum Nanostructures of Crystalline Solid Solution Oxides
基于晶体固溶氧化物量子纳米结构的人工光合作用助催化剂的研制
- 批准号:
22H02169 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Depolymerization of crystalline cellulose by solid catalysts
固体催化剂解聚结晶纤维素
- 批准号:
21H01708 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Growth and characterization of single crystalline lithium niobate-tantalate (Li(Nb,Ta)O3) solid solutions for high-temperature sensor and actuator applications
用于高温传感器和执行器应用的单晶铌酸锂-钽酸锂 (Li(Nb,Ta)O3) 固溶体的生长和表征
- 批准号:
409656768 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Lamellar crystals and the behavior of molecular chains in the monolayers of crystalline polymers grafted onto solid substrates
层状晶体和接枝到固体基质上的单层结晶聚合物中分子链的行为
- 批准号:
19K03775 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solid-State NMR of Polymer and Liquid Crystalline Nanocomposites
聚合物和液晶纳米复合材料的固态核磁共振
- 批准号:
RGPIN-2014-04219 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Baird's Polycyclic Anti-Aromatic Chromophores & Application to Engineer Crystalline Dyads for Photon Upconversion in the Solid State
职业生涯:贝尔德的多环反芳香族发色团
- 批准号:
1753012 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of molecular crystalline electrolytes for all-solid magnesium sulfur batteries
全固态镁硫电池分子结晶电解质的研制
- 批准号:
17K14460 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)