Development of a novel method to quantify and analyze cephalogram using AI

开发一种使用人工智能量化和分析头影图的新方法

基本信息

  • 批准号:
    20K18788
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-11-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

本研究では人工知能(AI)技術を応用することで、矯正診断に広く用いられている頭部X線規格写真(セファログラム)の革新的な分析方法を開発する。セファログラムは顎顔面の骨格形態の分析のため古くから用いられているが、セファログラム上の計測点をプロットして距離や角度を計測するという分析の手法は、80年以上大きく変わっていない。しかし、従来の分析では計測点の位置が同じ症例は、計測点に含まれない部分の形態が異なっていたとしても同じ分析結果となってしまう。本研究では人工知能技術を応用することで、セファロ画像から顎顔面形態を表現する値を直接抽出し、計測点を用いない新たな分析方法を提案する。当該年度においては、敵対的生成ネットワークと呼ばれる手法を用いることで、正規分布しているランダムなノイズ(潜在変数)から人工的に様々な顔面パターンのセファロ画像が生成可能であることを確認した。また、このランダムなノイズを連続的に変化させると生成される画像も連続的に変化することを確認した。つまり、この潜在変数は画像に含まれる情報を効率よく圧縮した画像の「種」となるような表現である。この「種」の値を用いて患者の顔面パターンの分類や成長予測など他のタスクを精度よく行うことができる可能性がある。これらの成果について、九州矯正歯科学会にて学会発表を行った。また、当初の計画ではVariational auto-encoderと呼ばれる手法を用いて画像の潜在変数への圧縮を行う予定であったが、近年の敵対的生成ネットワークの急速な発展を鑑みて、敵対的生成ネットワークを利用する手法を変更した。
This study develops an innovative analytical method for the application of artificial intelligence (AI) techniques to diagnostic applications. The analysis of bone morphology of the jaw is based on the method of measuring the distance and angle of the measurement point on the jaw surface. The position of the measurement point is the same as that of the measurement point, and the shape of the measurement point is different from that of the analysis result. In this study, we propose a new analysis method for the application of artificial intelligence technology, such as direct extraction, measurement point application and facial morphology. When the year is over, the enemy's production method is used, the normal distribution is used, the potential number is used, and the artificial production method is used. This is the first time I've ever seen a picture of you. The potential number of images contains information, efficiency, compression, and "species" of images. The "species" is used to classify the patient's face, to predict his growth, and to predict his growth. The Kyushu Orthodontic Society organized the research and development of the results of the study. In the past, the method of variable auto-encoder and call was used to determine the potential number of images. In recent years, the method of rapid development was used to determine the potential number of images.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
敵対的生成ネットワークを用いた側面頭部エックス線規格写真の生成とその機械学習モデルの解析
使用生成对抗网络生成标准头颅侧位 X 射线照片并分析其机器学习模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    江森 利郎;濱中 僚;空閑 大輝;山口 留奈;堀口 友衣;陣内 祥男; 小牧 博也;富永 淳也;古賀 義之;吉田 教明
  • 通讯作者:
    吉田 教明
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

濱中 僚其他文献

唇側ブラケットと舌側ブラケットの長期的な歯の移動の有限要素解析
唇舌托槽长期牙齿移动的有限元分析
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小牧 博也;濱中 僚;陣内 祥男;空閑 大輝;山口 留奈;富永 淳也;古賀 義之;吉田 教明
  • 通讯作者:
    吉田 教明
川村尚彦, 中尾友也, 上地潤, 飯嶋雅弘
河村直彦、中尾智也、植地淳、饭岛正宏
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    江森 利郎;濱中 僚;空閑 大輝;山口 留奈;堀口 友衣;陣内 祥男; 小牧 博也;富永 淳也;古賀 義之;吉田 教明;上顎両側側切歯の口蓋側転位を伴う歯槽性上顎前突症例
  • 通讯作者:
    上顎両側側切歯の口蓋側転位を伴う歯槽性上顎前突症例

濱中 僚的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('濱中 僚', 18)}}的其他基金

3次元スキャンと人工知能(AI)を利用した、矯正治療後の顔貌予測システムの開発
利用3D扫描和人工智能(AI)开发正畸治疗后面部外观预测系统
  • 批准号:
    24K20061
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists

相似海外基金

人工知能を用いた労働者の感情解析と生産性向上のための業務支援システムの開発
开发工作支持系统,利用人工智能分析工人情绪并提高生产力
  • 批准号:
    24K13524
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
人工知能に対する帰納的説明モデルの提案と人間協調型人工知能への応用
人工智能归纳解释模型的提出及其在人类协作人工智能中的应用
  • 批准号:
    24K15081
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
人工知能に基づく非線形高次元小標本データ解析とその社会的応用
基于人工智能的非线性高维小样本数据分析及其社会应用
  • 批准号:
    24K14847
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多孔質媒体の間隙構造モデリングと人工知能が連携する地下ダムの非破壊機能診断
利用多孔介质孔隙结构建模和人工智能对地下大坝进行无损功能诊断
  • 批准号:
    23K27020
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
人工知能・拡張現実を活用した認知症ケアコミュニケーション技術の教育システム開発
利用人工智能和增强现实开发痴呆症护理通信技术的教育系统
  • 批准号:
    23K24693
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
人工知能を活用した津軽弁から共通語への音声・文字情報変換システムの基盤技術開発
利用人工智能开发从津轻方言到通用语言的语音和文本信息转换系统的基础技术
  • 批准号:
    23K25330
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
特発性間質性肺炎の診断や予後予測に有用な新規血清バイオマーカーと人工知能の開発
开发有助于特发性间质性肺炎诊断和预后预测的新型血清生物标志物和人工智能
  • 批准号:
    24K02456
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
人工知能を用いた唾液腺疾患の自動診断:多施設共同研究
利用人工智能自动诊断唾液腺疾病:多中心协作研究
  • 批准号:
    24K13166
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
XAI(説明可能な人工知能)を用いた口臭画像診断システムの開発研究
利用XAI(可解释人工智能)研发口臭图像诊断系统
  • 批准号:
    24K13210
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
人工知能による画像診断とメタボロミクスを融合した乳癌リンパ節転移予測モデルの開発
利用人工智能开发结合图像诊断和代谢组学的乳腺癌淋巴结转移预测模型
  • 批准号:
    24K11752
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了