The Influence of Temporal Spacing on the Cognitive and Neural Systems Supporting Feedback Learning

时间间隔对支持反馈学习的认知和神经系统的影响

基本信息

  • 批准号:
    317946335
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Rewarding and aversive experiences exert a strong influence on later decision making. When making a choice between an apple and a banana, for example, our decision relies on values built across many experiences. In general, by learning over time which stimuli and actions regularly lead to favorable outcomes, we can make adaptive choices in our complex and changing world. Over the past few decades, neuroscience research has revealed the neural mechanisms supporting learning from reward feedback, demonstrating a critical role for the striatum and midbrain dopamine system. Simple feedback learning paradigms are increasingly being extended to understand learning dysfunctions in mood and psychiatric disorders as well as addiction. However, one important characteristic that this research ignores is the effect of time on learning: events in human feedback learning paradigms are only separated by several seconds, while learning events in the everyday environment are almost always separated by long periods of time. Importantly, early studies on feedback learning in the 20th century found that spacing of learning events strongly increased the rate of learning, suggesting a quantitative or qualitative shift in the underlying learning mechanisms. Remarkably, however, the effect of spacing between learning events on human reward learning has not been investigated. Further, human and animal research has not examined the neural basis of the beneficial effect of spacing on learning. Given that spacing defines most learning conditions in the everyday environment, our understanding of feedback learning mechanisms is likely to be incomplete. The current amended research proposal aims to understand the cognitive and neural mechanisms underlying the effect of temporal spacing on feedback learning. During my fellowship at Stanford, Experiments 1 & 2, reviewed below, examined behavioral and neural characteristics of reward-based feedback learning by manipulating spacing between learning events in a single session or across weeks. We found striking increases in learning due to spacing. At UCL, the proposed Experiments 3 & 4 will provide critical extensions to this work by examining behavioral effects of spaced learning in patients with major depressive disorder, neural activity in healthy young adults using MEG, and test how well-learned associations can be unlearned. The planned research we will take important steps in translating this work to understand learning dysfunctions in mood disorders, and the extension will allow for the completion of this work in the new institution. Overall, these studies will address a large gap in our knowledge of the fundamental processes of feedback learning, with potentially broad implications for our understanding of learning in mood disorders and addiction.
奖励和厌恶的经验对后来的决策产生很大的影响。例如,当我们在苹果和香蕉之间做出选择时,我们的决定依赖于在许多经验中建立的价值观。总的来说,随着时间的推移,通过学习哪些刺激和行为经常导致有利的结果,我们可以在复杂多变的世界中做出适应性的选择。在过去的几十年里,神经科学研究揭示了支持奖励反馈学习的神经机制,证明了纹状体和中脑多巴胺系统的关键作用。简单的反馈学习范式越来越多地被扩展到理解学习障碍的情绪和精神疾病以及成瘾。然而,这项研究忽略的一个重要特征是时间对学习的影响:人类反馈学习范式中的事件只相隔几秒钟,而日常环境中的学习事件几乎总是相隔很长一段时间。重要的是,世纪关于反馈学习的早期研究发现,学习事件的间隔大大提高了学习的速度,这表明潜在的学习机制发生了质或量的变化。然而,值得注意的是,学习事件之间的间隔对人类奖励学习的影响尚未被研究。此外,人类和动物研究还没有研究间隔对学习有益影响的神经基础。鉴于间距定义了日常环境中的大多数学习条件,我们对反馈学习机制的理解可能是不完整的。目前的修正研究建议旨在了解反馈学习的时间间隔的影响的认知和神经机制。在斯坦福大学的研究期间,我做了一个实验,实验1和实验2(下文将对此进行回顾),通过在一次或几周内控制学习事件之间的间隔,研究了基于奖励的反馈学习的行为和神经特征。我们发现,由于间隔,学习能力显著提高。在伦敦大学学院,拟议的实验3和4将通过检查重度抑郁症患者间隔学习的行为影响,使用MEG的健康年轻人的神经活动,并测试如何学习良好的关联可以被遗忘,为这项工作提供关键的扩展。计划中的研究,我们将采取重要步骤,翻译这项工作,以了解情绪障碍的学习功能障碍,并延长将允许在新的机构完成这项工作。总的来说,这些研究将解决我们对反馈学习基本过程的认识上的巨大差距,对我们理解情绪障碍和成瘾的学习具有潜在的广泛影响。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reward Learning over Weeks Versus Minutes Increases the Neural Representation of Value in the Human Brain
几周而不是几分钟的奖励学习可以增加人脑中价值的神经表征
  • DOI:
    10.1523/jneurosci.0075-18.2018
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wimmer;Gorgolewski;Poldrack
  • 通讯作者:
    Poldrack
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. G. Elliott Wimmer, Ph.D.其他文献

Dr. G. Elliott Wimmer, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
  • 批准号:
    2305217
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
  • 批准号:
    BB/Y002709/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
  • 批准号:
    FT230100388
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
  • 批准号:
    DE240100668
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
  • 批准号:
    23K28346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了