Computationally efficient LES-TPDF turbulent combustion models

计算高效的 LES-TPDF 湍流燃烧模型

基本信息

项目摘要

TThe combustion in many technical burners occurs in turbulent flow. Due to the overlap of chemical and turbulent and time scales and because of the non-linear dependence of the reaction rate on the concentrations of chemical species, the turbulence chemistry interaction must be taken into account e.g. by using transported transported probability density functions (TPDF's). The turbulent flow can be calculated very well using Large Eddy Simulations (LES), however usually not all spatial scales of chemical reactions can be resolved. The direct coupling of TPDF's with LES is computationally intensive because the TPDF must be represented by many stochastic particles in each LES-computational cell. The calculation of the evolution of the chemical species is the computationally most expensive part of the code. The aim of this project is to develop methods that provides a similar quality of prediction of the evolution of chemical species at a significantly reduced computational effort. Two related TPDF approaches will be developed, which take into account the close correlation between the mixture fraction and species. Basis in both cases is a LES for the simulation of turbulent flow field. In one approach the TPDF are represented with a low number of stochastic particles (sparse Lagrangian method). The mixture model uses larger areas in physical space and mixes preferably particles of similar mixture fraction. In the second approach the TPDF is derived from a RANS simulation, which is performed using the time-averaged LES-flow field. The RANS simulation is cheaper since it needs only be stationary and a coarser computational grid can be applied. In both cases the feedback to the LES occurs by means of a density conditioned on the mixture fraction. To further reduce the computational time, the solution of chemical evolution on GPU's and the use of tables with systematically reduced chemical models are examined.
在许多技术燃烧器中,燃烧发生在湍流中。由于化学和湍流和时间尺度的重叠,并且由于反应速率对化学物质浓度的非线性依赖性,必须考虑湍流化学相互作用,例如通过使用传输的传输概率密度函数(TPDF)。大涡模拟(LES)可以很好地计算湍流,但通常不是所有的空间尺度的化学反应可以解决。TPDF与LES的直接耦合是计算密集型的,因为TPDF必须由每个LES计算单元中的许多随机粒子表示。化学物种演化的计算是代码中计算成本最高的部分。该项目的目的是开发方法,提供了一个类似的质量预测的化学物种的演变,在一个显着减少计算工作。将开发两种相关的TPDF方法,考虑到混合物分数和物种之间的密切相关性。在这两种情况下的基础是一个大涡模拟湍流场。在一种方法中,TPDF用少量随机粒子表示(稀疏拉格朗日方法)。混合物模型在物理空间中使用较大的区域,并且优选地混合相似混合物分数的颗粒。在第二种方法中,TPDF来自RANS模拟,这是使用时间平均LES流场进行。RANS模拟更便宜,因为它只需要是静止的,并且可以应用更粗糙的计算网格。在这两种情况下,反馈到LES发生的密度条件下的混合物分数的装置。为了进一步减少计算时间,在GPU上的化学演化的解决方案和使用表与系统地减少化学模型进行检查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Yipeng Ge, Ph.D.其他文献

Dr. Yipeng Ge, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
  • 批准号:
    24K15389
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了