An innovative method to achieve functional dental pulp regeneration with the complex scaffold of atelocollagen gelatin sponge and treated dentin matrix

利用去端肽胶原明胶海绵和处理过的牙本质基质的复杂支架实现功能性牙髓再生的创新方法

基本信息

  • 批准号:
    19K19058
  • 负责人:
  • 金额:
    $ 2.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Dental pulp diseases severely compromise patients' quality of life and cause huge economic burden. Functional dental pulp regeneration has gained enormous attention as an alternative to root canal treatment. This study aimed to develop an innovative method to achieve functional dental pulp regeneration with new blood vessels and sensory nerves for future clinical treatments. Generally, key elements including suitable biomaterial scaffolds, bioactive molecules and dental pulp stem cells are needed for tissue regeneration. The successful fabrication of atelocollagen/gelatin (ACG) sponge holds great potential as it shares the main component of collagen with dental pulp tissue. ACG sponge could also be modified or incorporated with bioactive reagents as a drug delivery system. Heat treatment in the vacuum, which did not introduce any toxic crosslinking reagent, effectively improved the structural stability of ACG sponge. Moreover, ACG/β-TCP/Mg2+ composite sponge had been successfully fabricated and showed similar porous microstructures. Bioactive β-TCP and Mg2+ were shown to be fully incorporated into ACG sponge as revealed by SEM and XPS analyses. Dental pulp stem cells were isolated and cultured from incisors of 4-week-old SD rats. The optimal concentration of Mg2+ for dental pulp stem cells proliferation and differentiation was confirmed in vitro. ACG/β-TCP/Mg2+ composite sponge did not compromise cell growth and proliferation on the sponge surface. These indicate that ACG sponge combined with bioactive molecules may pose the possibility for tissue engineering.
牙髓疾病严重影响患者的生活质量,造成巨大的经济负担。功能性牙髓再生作为一种替代根管治疗的方法已经引起了广泛的关注。本研究旨在发展一种具有新生血管和感觉神经功能的牙髓再生方法,为今后的临床治疗提供参考。一般来说,组织再生需要合适的生物材料支架、生物活性分子和牙髓干细胞等关键要素。由于ACG海绵与牙髓组织共享胶原蛋白的主要成分,因此ACG海绵的成功制备具有很大的潜力。ACG海绵也可以修饰或与生物活性试剂结合作为药物输送系统。真空热处理,不引入任何有毒交联试剂,有效提高了ACG海绵的结构稳定性。成功制备了ACG/β-TCP/Mg2+复合海绵,并表现出相似的多孔微观结构。通过扫描电镜和XPS分析发现,具有生物活性的β-TCP和Mg2+完全融入到ACG海绵中。从4周龄SD大鼠门牙中分离培养牙髓干细胞。确定了Mg2+对牙髓干细胞体外增殖分化的最佳浓度。ACG/β-TCP/Mg2+复合海绵不影响海绵表面细胞的生长和增殖。这表明ACG海绵与生物活性分子的结合有可能用于组织工程。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effectively improved 3-dimensional structural stability of atelocollagen-gelatin sponge biomaterials by heat treatment
通过热处理有效提高去端肽胶原-明胶海绵生物材料的三维结构稳定性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Longqiang Yang;Tadashi Miura;Masataka Kasahara
  • 通讯作者:
    Masataka Kasahara
Decreased in vitro degradation of atelocollagen/gelatin sponge by heat treatment
通过热处理减少去端肽胶原/明胶海绵的体外降解
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang L.;Miura T.;Kasahara M.
  • 通讯作者:
    Kasahara M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

楊 隆強其他文献

楊 隆強的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Electrospun hollow fibres for muscle tissue engineering in a soft bioreactor chamber
用于软生物反应器室肌肉组织工程的电纺中空纤维
  • 批准号:
    NC/Y500604/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Training Grant
Tissue Engineeringによる消化管内視鏡的粘膜切除術後狭窄予防法の確立
利用组织工程建立预防胃肠内镜粘膜切除术后狭窄的方法
  • 批准号:
    24K11102
  • 财政年份:
    2024
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
2023 Biomaterials and Tissue Engineering
2023 生物材料与组织工程
  • 批准号:
    10675948
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
Health monitoring of fistulas for dialysis patients using ultrasound scans 1=Biomaterials and tissue engineering 2=Healthcare technologies
使用超声波扫描对透析患者的瘘管进行健康监测 1=生物材料和组织工程 2=医疗保健技术
  • 批准号:
    2871818
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Studentship
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
  • 批准号:
    10830613
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
Blending Dentin to Dentin: Biometric Hydrogels for Dentin Tissue Engineering
将牙本质与牙本质混合:用于牙本质组织工程的生物识别水凝胶
  • 批准号:
    10795693
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
Programming and implementation of a clinical trials visual testing app platform for assessment of advances in tissue engineering
用于评估组织工程进展的临床试验视觉测试应用程序平台的编程和实施
  • 批准号:
    2887926
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Studentship
Cold Sintering of Advanced Ceramics and Glass along with Natural Sustainable Materials for Bone Tissue Engineering
先进陶瓷和玻璃以及天然可持续材料的冷烧结用于骨组织工程
  • 批准号:
    2891030
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
    Studentship
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
  • 批准号:
    10837289
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
Integrating tissue engineering and microfluidics to model the spatial niches of the human endometrium in vitro with guidance from in vivo multiomics data
整合组织工程和微流体,在体内多组学数据的指导下,体外模拟人类子宫内膜的空间生态位
  • 批准号:
    10817471
  • 财政年份:
    2023
  • 资助金额:
    $ 2.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了