Performance and Efficiency in HPC with Custom Computing
通过自定义计算实现 HPC 的性能和效率
基本信息
- 批准号:320898746
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerous projects have shown that the use of accelerators, such as field-programmable gate arrays (FPGAs), many-core processors, or graphics processing units (GPUs), can provide significant performance and energy-efficiency benefits in high-performance computing. Still, the use of accelerators is not pervasive, even for application domains that are very likely to profit from accelerators. The reasons for the rather slow adoption of accelerators by HPC developers are manifold, for example: lack of technical knowledge about accelerators, unclear value proposition of time investment in code optimization, missing understanding of the optimization potential for applications, lack of suitable training materials, shortage of libraries that allow for reusing accelerators as black boxes. We propose to establish a structured support and consulting process at our compute center, which aims at guiding HPC developers during the complete process from performance analysis and optimization potential estimation to finally optimizing the code by accelerating computationally expensive hotspots. This process enhances teams from computational sciences with complementary expertise and thus adds a value proposition to the performance engineering task by increasing chances to reduce times-to-solution or being able to simulate larger systems. To allow the developers to leverage the experiences and developments from previous work, we will abstract and encapsulate frequently used functions in reusable libraries. Finally, we will develop training materials that are tailored to the needs of developers from computational science and engineering and establish a repository of example codes that illustrate best practices. In this project, we will exploit the specific technological and research strengths of our HPC computing center and our users. First, we leverage the fact that our core HPC users use own and open-source codes and are focused on a small set of application domains (computational nanophotonics, molecular dynamics, quantum chemistry). This focus in application domains allows us to share methods and results for different codes. Second, we will concentrate on FPGAs as accelerator technology, because FPGAs have arguably the highest efficiency potential and also a dynamic market development. The steps towards standardization after the acquisition of Altera by Intel and the introduction of IBM's CAPI accelerator interface, along with improvements of high-level design tools for FPGAs provide a new technological basis for a broader adoption of FPGAs in HPC. We are confident that the combination of our substantial expertise in the area of custom computing with FPGAs and the clear application focus, will allow us to significantly advance the field for high-performance computing with FPGA accelerators and to demonstrate the performance and energy efficiency benefits of FPGAs with actual production HPC codes.
许多项目已经表明,使用加速器,如现场可编程门阵列(FPGA),众核处理器或图形处理单元(GPU),可以在高性能计算中提供显着的性能和能效优势。尽管如此,加速器的使用并不普遍,即使对于很可能从加速器中获利的应用程序领域也是如此。HPC开发人员采用加速器相当缓慢的原因是多方面的,例如:缺乏关于加速器的技术知识,代码优化时间投资的价值主张不明确,缺乏对应用程序优化潜力的理解,缺乏合适的培训材料,缺乏允许将加速器作为黑盒重用的库。我们建议在我们的计算中心建立一个结构化的支持和咨询流程,旨在指导HPC开发人员从性能分析和优化潜力评估到最终通过加速计算昂贵的热点来优化代码的整个过程。这个过程增强了来自计算科学的团队的互补专业知识,从而通过增加减少解决方案时间或能够模拟更大系统的机会,为性能工程任务增加了价值主张。为了允许开发人员利用以前工作中的经验和开发,我们将在可重用库中抽象和封装常用函数。最后,我们将根据计算科学和工程开发人员的需求开发培训材料,并建立一个示例代码库,以说明最佳实践。在这个项目中,我们将利用我们的HPC计算中心和我们的用户的特定技术和研究优势。首先,我们利用了这样一个事实,即我们的核心HPC用户使用自己的和开源代码,并专注于一小部分应用领域(计算纳米光子学,分子动力学,量子化学)。这种对应用领域的关注使我们能够共享不同代码的方法和结果。其次,我们将专注于FPGA作为加速器技术,因为FPGA可以说具有最高的效率潜力,而且市场发展也很活跃。英特尔收购Altera之后的标准化步骤、IBM的CAPI加速器接口的引入以及FPGA高级设计工具的改进沿着为FPGA在HPC中的更广泛采用提供了新的技术基础。我们相信,我们在FPGA定制计算领域的丰富专业知识和明确的应用重点相结合,将使我们能够通过FPGA加速器显着推进高性能计算领域,并通过实际生产HPC代码展示FPGA的性能和能效优势。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Massively Parallel Algorithm for the Approximate Calculation of Inverse p-th Roots of Large Sparse Matrices
- DOI:10.1145/3218176.3218231
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:D. Richters;Michael Lass;A. Walther;Christian Plessl;T. Kuhne
- 通讯作者:D. Richters;Michael Lass;A. Walther;Christian Plessl;T. Kuhne
Flexible FPGA design for FDTD using OpenCL
- DOI:10.23919/fpl.2017.8056844
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Tobias Kenter;J. Förstner;Christian Plessl
- 通讯作者:Tobias Kenter;J. Förstner;Christian Plessl
OpenCL Implementation of Cannon’s Matrix Multiplication Algorithm on Intel Stratix 10 FPGAs
Cannon 矩阵乘法算法在 Intel Stratix 10 FPGA 上的 OpenCL 实现
- DOI:10.1109/icfpt47387.2019.00020
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:P. Gorlani;T. Kenter;C. Plessl
- 通讯作者:C. Plessl
A Submatrix-Based Method for Approximate Matrix Function Evaluation in the Quantum Chemistry Code CP2K
- DOI:10.1109/sc41405.2020.00084
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Michael Lass;Robert Schade;T. Kuhne;Christian Plessl
- 通讯作者:Michael Lass;Robert Schade;T. Kuhne;Christian Plessl
OpenCL-Based FPGA Design to Accelerate the Nodal Discontinuous Galerkin Method for Unstructured Meshes
- DOI:10.1109/fccm.2018.00037
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Tobias Kenter;Gopinath Mahale;Samer Alhaddad;Y. Grynko;Christian Schmitt;Ayesha Afzal;Frank Hannig;J. Förstner;Christian Plessl
- 通讯作者:Tobias Kenter;Gopinath Mahale;Samer Alhaddad;Y. Grynko;Christian Schmitt;Ayesha Afzal;Frank Hannig;J. Förstner;Christian Plessl
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christian Plessl其他文献
Professor Dr. Christian Plessl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
- 批准号:
DE240100863 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
- 批准号:
DE240100115 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
- 批准号:
10110221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals
循环和生物底物的电化学氧化,用于高效生产有机化学品
- 批准号:
10111012 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
- 批准号:
10104871 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D














{{item.name}}会员




