Exact Relaxation-Based Inference in Graphical Models (ERBI)
图模型中基于精确松弛的推理 (ERBI)
基本信息
- 批准号:323301551
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphical models are an important and standard modeling tool in computer vision, bio-informatics, communication theory, statistical physics, signal processing, information retrieval and statisticalmachine learning. This is due to their natural ability to model complex objects consisting of a number of mutually dependent interacting components. We address an important maximum a posteriori inference problem related to graphical models which consists in finding the most probable configuration of the components' states. In general, this problem is NP-hard. However, there are efficient approximate solvers showing great results in a number of applications. At the same time, exact solvers for this problem are typically slow and memory-intensive. This prohibits their use for large problem instances. In spite of that, they are widely used in the areas such as bio-informatics, where accuracy of the obtained solutions plays a crucial role.The goal of this project is an exact, but also scalable and parallelizable method for solving the inference problem in graphical models. We base on our preliminary work which provides a proof of concept for such type of solvers. The method is based on the fact that approximate relaxation-based solvers often deliver solutions where only a small number of variables differ from the exact solution. This is used to efficiently decrease the size of the problem to be solved by standard slow exact solvers. Although our method has shown promising results in a recent benchmark study, its practical application is limited to sparse pairwise models with a small number of variable states. In this project we extent our exact inference method to the graphical models required in practice, which are dense higher order models with large variable state spaces and additional linear constraints.
图形模型是计算机视觉、生物信息学、通信理论、统计物理、信号处理、信息检索和统计机器学习中重要的标准建模工具。这是由于它们对由许多相互依赖的交互组件组成的复杂对象进行建模的天然能力。我们解决了与图形模型相关的一个重要的最大后验推理问题,该问题包括找到组件状态的最可能配置。一般来说,这个问题是np困难的。然而,有一些有效的近似求解器在许多应用中显示出很好的结果。与此同时,这个问题的精确求解器通常很慢且占用大量内存。这就禁止将它们用于大型问题实例。尽管如此,它们被广泛应用于诸如生物信息学等领域,其中获得的解决方案的准确性起着至关重要的作用。这个项目的目标是一个精确的,但也可扩展和并行的方法来解决图形模型中的推理问题。我们以我们的初步工作为基础,为这种类型的求解器提供了概念证明。该方法基于这样一个事实,即基于近似松弛的求解器通常只提供与精确解有少量变量差异的解。这是用来有效地减少问题的大小要解决的标准缓慢的精确求解。虽然我们的方法在最近的基准研究中显示出有希望的结果,但其实际应用仅限于具有少量变量状态的稀疏成对模型。在这个项目中,我们将我们的精确推理方法扩展到实践中所需的图形模型,这些模型是具有大变量状态空间和附加线性约束的密集高阶模型。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrete Graphical Models - An Optimization Perspective
离散图形模型 - 优化视角
- DOI:10.1561/0600000084
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bogdan Savchynskyy
- 通讯作者:Bogdan Savchynskyy
A Study of Lagrangean Decompositions and Dual Ascent Solvers for Graph Matching
- DOI:10.1109/cvpr.2017.747
- 发表时间:2016-12
- 期刊:
- 影响因子:0
- 作者:P. Swoboda;C. Rother;Hassan Abu Alhaija;Dagmar Kainmüller;Bogdan Savchynskyy
- 通讯作者:P. Swoboda;C. Rother;Hassan Abu Alhaija;Dagmar Kainmüller;Bogdan Savchynskyy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Bogdan Savchynskyy其他文献
Dr. Bogdan Savchynskyy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Filtering Algorithms Based on Lagrangian Relaxation
基于拉格朗日松弛的滤波算法
- 批准号:
RGPIN-2022-05025 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Surface Tension Modelling of Molten Oxides based on Relaxation Mechanism of Surface Ionic Structure
基于表面离子结构弛豫机制的熔融氧化物表面张力建模
- 批准号:
21H01683 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
MODELING MRI-BASED TISSUE RELAXATION IN THE PRESENCE OF IRON OVERLOAD AND STEATOSIS
在存在铁超载和脂肪变性的情况下对基于 MRI 的组织松弛进行建模
- 批准号:
10395564 - 财政年份:2021
- 资助金额:
-- - 项目类别:
MODELING MRI-BASED TISSUE RELAXATION IN THE PRESENCE OF IRON OVERLOAD AND STEATOSIS
在存在铁超载和脂肪变性的情况下对基于 MRI 的组织松弛进行建模
- 批准号:
10196572 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Analogy between heat and flow of drag-reducing surfactant aqueous solution based on relaxation time
基于弛豫时间的减阻表面活性剂水溶液热量与流动的类比
- 批准号:
19K21931 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Quantitative T2* Relaxation and Field Inhomogeneity Mapping Using Multi-Echo Radial FLASH Magnetic Resonance Imaging and Model-based Iterative Reconstruction
使用多回波径向闪光磁共振成像和基于模型的迭代重建进行定量 T2* 弛豫和场不均匀性映射
- 批准号:
427934942 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
A study of massively parallel high-performance graph partitioning using continuous relaxation-based algorithms
使用基于连续松弛的算法进行大规模并行高性能图划分的研究
- 批准号:
19K20280 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Functionalization of tensegrity network structures based on stress relaxation and redundancy of cables
基于应力松弛和电缆冗余的张拉整体网络结构功能化
- 批准号:
19K21921 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
"Electronic Relaxation Pathways in Nucleic Acid Derivatives Based on Functionalization of the Pyrimidine Chromophore"
“基于嘧啶发色团功能化的核酸衍生物中的电子弛豫途径”
- 批准号:
1800052 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: A Global Algorithm for Quadratic Nonconvex AC-OPF Based on Successive Linear Optimization and Convex Relaxation
协作研究:基于逐次线性优化和凸松弛的二次非凸AC-OPF全局算法
- 批准号:
1851602 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant