Rapidly rotating Rayleigh-Bénard convection in liquid metals

液态金属中快速旋转的瑞利-贝纳德对流

基本信息

项目摘要

Rotating Rayleigh-Bénard convection in liquid metals is considered to be an ideal model system of the magnetohydrodynamic processes occurring in many geophysical and astrophysical settings, such as planetary cores and stellar convection zones. From a fluid dynamical point of view these flows distinguish themselves by their low Prandtl number, leading to inherently different instability mechanisms and a much earlier transition to turbulence, when compared to moderate and high Prandtl number flows. However, due to the much more demanding resolution requirements for direct numerical simulations (DNS) and the limited visual access in experiments because of the metal's opaqueness, studies are sparse. Consequently, the underlying physics, notably oscillatory convection, is not well understood. The objective of the proposed research is thus to enrich our knowledge about convective flows in liquid metals. For this purpose, high-resolution DNS of small Prandtl number convection shall be conducted in cylindrical containers with various aspect ratios, both under the influence of rapid rotation and of magnetic fields. In particular, the regime of geostrophic turbulence will be covered, which is little explored and yet the most relevant in geophysical settings. The control parameters will be chosen to match exactly the unique rotating magnetoconvection device at the Simulated Planetary Interiors Laboratory (SPINlab) at UCLA which uses liquid gallium as working fluid. This allows for a one-to-one comparison and provides the foundation for sophisticated analysis techniques. To interpret and analyse the obtained data, approaches from turbulent convection theory, system identification, and laboratory geophysical fluid dynamics shall be brought together. This means, besides using the traditional methods of studying spectra, the mean, root mean square, and higher-order statistical moments, the dynamical mode decomposition (DMD) shall be exploited. The DMD will directly link the frequencies found in the experiments and the DNS with actual flow structures and will further allow the study of their temporal evolution. Moreover, a novel view on this problem shall be gained by borrowing techniques from system identification theory. It is aimed to design a dynamic observer, which based on single thermistor measurements and in conjunction with the DNS, will be able to reconstruct the entire flow in the otherwise visually inaccessible experiment.
液态金属中的旋转Rayleigh-Bénard对流被认为是许多地球物理和天体物理环境中发生的磁流体动力学过程的理想模型系统,例如行星核心和恒星对流区。从流体动力学的角度来看,这些流量区分自己的低普朗特数,导致固有的不同的不稳定机制和更早的过渡到湍流,相比,中等和高普朗特数流量。然而,由于直接数值模拟(DNS)的分辨率要求更高,并且由于金属的不透明性,实验中的视觉访问有限,因此研究很少。因此,基本的物理,特别是振荡对流,没有得到很好的理解。因此,建议的研究的目的是丰富我们的知识,在液态金属的对流。为此,应在快速旋转和磁场影响下,在具有各种纵横比的圆柱形容器中进行小普朗特数对流的高分辨率DNS。特别是,该制度的地转湍流,这是很少探讨,但在地球物理环境中最相关的。控制参数的选择将与加州大学洛杉矶分校模拟行星内部实验室(SPINlab)使用液体镓作为工作流体的独特旋转磁对流装置完全匹配。这允许一对一的比较,并为复杂的分析技术提供了基础。为了解释和分析所获得的数据,应将湍流对流理论、系统识别和实验室地球物理流体动力学的方法结合在一起。这意味着,除了使用传统的研究光谱的方法,平均值,均方根和高阶统计矩,动力学模式分解(DMD)应加以利用。DMD将直接将实验中发现的频率和DNS与实际流动结构联系起来,并进一步允许研究它们的时间演变。同时,借鉴系统辨识理论的方法,对这一问题提出了新的见解。它的目的是设计一个动态观测器,它基于单个热敏电阻测量,并与DNS相结合,将能够重建整个流动,否则视觉上无法访问的实验。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rotating convection with centrifugal buoyancy: Numerical predictions for laboratory experiments
  • DOI:
    10.1103/physrevfluids.4.073501
  • 发表时间:
    2019-07-19
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Horn, Susanne;Aurnou, Jonathan M.
  • 通讯作者:
    Aurnou, Jonathan M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Susanne Horn其他文献

Dr. Susanne Horn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Susanne Horn', 18)}}的其他基金

The Dark Matter of the Immunopetidome: Cryptic Peptides as Tumor Antigens in Melanoma.
免疫肽组的暗物质:作为黑色素瘤肿瘤抗原的隐肽。
  • 批准号:
    420185699
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Building health intelligence with complex data on tumor cell states and therapy resistance
利用肿瘤细胞状态和治疗耐药性的复杂数据构建健康情报
  • 批准号:
    418179595
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Clinical Research Units

相似国自然基金

圆柱形阳极层霍尔等离子体推进器中的Rotating Spoke研究
  • 批准号:
    11275063
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
  • 批准号:
    24K17404
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum mechanics in rotating reference frames
旋转参考系中的量子力学
  • 批准号:
    2888161
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
The torque around the axial direction of rotating detoantion engines
旋转爆震发动机绕轴向的扭矩
  • 批准号:
    23KJ1084
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Rotating Anode Systems for Fast Electrorefining of Copper: Towards a Stronger Resource-Recycling Framework
开发用于铜快速电解精炼的旋转阳极系统:建立更强大的资源回收框架
  • 批准号:
    23K17834
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Quantifying safe operation of sustainable seals for rotating systems
量化旋转系统可持续密封件的安全运行
  • 批准号:
    EP/X030067/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Predicticting performance of carbon capture in intensified rotating packed beds using CFD
使用 CFD 预测强化旋转填充床中的碳捕获性能
  • 批准号:
    2883569
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Characterising Flow Regimes and Transitions, Heat Transport and Energy/Enstrophy Cascades in Rapidly Rotating Thermal Convection
表征快速旋转热对流中的流动状态和转变、热传输和能量/熵级联
  • 批准号:
    EP/W022087/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mathematical analysis for the compressible viscous rotating flow
可压缩粘性旋转流的数学分析
  • 批准号:
    23K19011
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Dynamic and Liquid Propellant Rotating Detonation Engine Physics Elucidation: Ballistic and Orbital Flight Demonstration
动态和液体推进剂旋转爆震发动机物理解析:弹道和轨道飞行演示
  • 批准号:
    23H05446
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Studyon a Pressure Gain Mechanisum by a Premixed Rotating Detonation Engine
预混旋转爆震发动机增压机构的研究
  • 批准号:
    23KK0082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了