Symmetry breaking for real reductive groups and applications to automorphic forms
实数还原群的对称性破缺及其在自守形式中的应用
基本信息
- 批准号:325558309
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let G be a Lie group and H a closed subgroup. For an irreducible representation of G we consider its restriction to H and are interested in finding its irreducible constituents. In the category of smooth representations of real reductive groups this involves the study of intertwining operators between an irreducible representation of G and an irreducible representation of H, intertwining for H. Such operators are also called symmetry breaking operators, and in this project we intend to construct and study families of symmetry breaking operators between principal series representations which depend meromorphically on the induction parameters. For G and H groups of split rank one, and for G and H general linear groups, the first main objective is to completely describe all symmetry breaking operators between (spherical) principal series in terms of such meromorphic families and their residues.Furthermore, symmetry breaking operators turn out to have interesting applications in number theory, where they can be used to find asymptotic estimates for period integrals of automorphic forms on locally symmetric spaces. We plan to use the above families of symmetry breaking operators to study period integrals for rank one locally symmetric spaces, and for locally symmetric spaces for general linear groups.
设G是李群,H是闭子群.对于G的不可约表示,我们考虑它对H的限制,并有兴趣找到它的不可约成分。在类别的光滑表示的真实的约化群这涉及到研究的交织运营商之间的一个不可约表示的G和一个不可约表示的H,交织为H。这样的运营商也被称为对称破缺运营商,在这个项目中,我们打算构建和研究家庭的对称破缺运营商之间的主系列表示,亚纯依赖于诱导参数。对于分裂秩为1的群G和H,以及一般线性群G和H,第一个主要目标是完全描述所有对称破缺算子,(球面)主级数的亚纯族及其留数。此外,对称破缺算子在数论中有着有趣的应用,在那里,它们可以用来找到局部对称空间上自守形式的周期积分的渐近估计。我们计划利用上述对称破缺算子族来研究秩为一的局部对称空间的周期积分,以及一般线性群的局部对称空间的周期积分。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry breaking operators for real reductive groups of rank one
- DOI:10.1016/j.jfa.2020.108568
- 发表时间:2018-12
- 期刊:
- 影响因子:1.7
- 作者:Jan Frahm;Clemens Weiske
- 通讯作者:Jan Frahm;Clemens Weiske
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jan Frahm其他文献
Professor Dr. Jan Frahm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
- 批准号:
MR/Y034007/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Breaking the Barrier: Mapping protein interactions in the bacterial outer membrane as targets for new antimicrobials
打破障碍:绘制细菌外膜中的蛋白质相互作用作为新抗菌药物的目标
- 批准号:
MR/Y012453/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Breaking Down the Structure-function Relationships in Enzymes that Catabolize Chlorophyll
职业:打破叶绿素分解酶的结构与功能关系
- 批准号:
2338329 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Breaking Barriers: Expanding Syphilis Point-of-care Testing and Immediate Treatment to Meet the Needs of Underserved Communities
打破障碍:扩大梅毒现场检测和立即治疗,以满足服务不足社区的需求
- 批准号:
502789 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Directed Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344490 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Breaking Barriers to Bethesda and Blaenau Being net zero
打破贝塞斯达和布莱瑙净零的障碍
- 批准号:
10059902 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility Studies
A novel microbial process breaking through the nitrogen cycling
突破氮循环的新型微生物过程
- 批准号:
DP230101340 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
An AI based ultrasonic array inspection of surface breaking defects resided on corroded and uneven surfaces
基于人工智能的超声波阵列检测腐蚀和不平坦表面上的表面破裂缺陷
- 批准号:
2887816 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




