大気歪み画像モデルを組み込んだ深層学習によるリモートセンシング画像の画質改善

利用深度学习结合大气畸变图像模型提高遥感图像的图像质量

基本信息

  • 批准号:
    19J13820
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-04-25 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

The purpose of this research is to enhance the quality of remote sensing images using deep 3D convolutional neural networks (CNNs).Improving the performance of CNNs-based methods with a few parameters and short processing time is very difficult, although it is a desirable task to improve the quality of remote sensing images. Thus, I proposed a new 2D CNN network using a parallel-connected backbone, the architecture of which consists residual connections and channel-attention mechanism. This work has been accepted by ACCV Workshop on Machine Learning and Computing for Visual Semantic Analysis, 2020.In addition, I proposed a new multi-spectral image fusion method using a combination of the proposed lightweight 3D VolumeNet model (which has been accepted by IEEE Transactions on Image Processing, 2021) and the texture transfer method using other modality high-resolution images. The experimental results show that the proposed method outperforms the existing methods in terms of objective accuracy assessment, efficiency and visual subjective evaluation. Consequently, I plan to submit this work to the IEEE Transactions on Geoscience and Remote Sensing.Overall, the progress of the research is basically in line with the original plan. I studied and referred to various state-of-the-art methods and then built my original models. It is worth noting that the proposed methods not only can exceed the existing methods in accuracy, but also has a faster processing speed and lower hardware requirements for saving the model, so they are suitable for practical applications.
本研究的目的是使用深度3D卷积神经网络(CNN)来提高遥感图像的质量。尽管提高遥感图像的质量是一项令人满意的任务,但在参数少、处理时间短的情况下提高基于CNN的方法的性能是非常困难的。因此,我提出了一个新的2D CNN网络,使用并行连接的骨干,其架构包括剩余连接和通道注意机制。该工作已被ACCV 2020年视觉语义分析机器学习和计算研讨会接受。此外,我提出了一种新的多光谱图像融合方法,该方法使用所提出的轻量级3D VolumeNet模型(已被IEEE Transactions on Image Processing,2021接受)和使用其他模态高分辨率图像的纹理转移方法相结合。实验结果表明,该方法在客观准确性评价、效率和视觉主观评价方面均优于现有方法。因此,我计划将这项工作提交给IEEE Transactions on Geoscience and Remote Sensing,总体而言,研究进展与原计划基本一致。我研究并参考了各种最先进的方法,然后建立了我的原始模型。值得注意的是,本文提出的方法不仅在精度上优于现有方法,而且具有更快的处理速度和更低的保存模型的硬件要求,适合于实际应用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zhejiang Lab/Zhejiang University/Dalian University of Technology(中国)
之江实验室/浙江大学/大连理工大学(中国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A 3D Shrinking-and-Expanding Module with Channel Attention for Efficient Deep Learning-Based Super-Resolution
  • DOI:
    10.1007/978-981-15-5852-8_11
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinhao Li;Yutaro Iwamoto;Yenwei Chen
  • 通讯作者:
    Yinhao Li;Yutaro Iwamoto;Yenwei Chen
Novel image restoration method based on multi-frame super-resolution for atmospherically distorted images
  • DOI:
    10.1049/iet-ipr.2019.0319
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinhao Li;Katsuhisa Ogawa;Yutaro Iwamoto;Yenwei Chen
  • 通讯作者:
    Yinhao Li;Katsuhisa Ogawa;Yutaro Iwamoto;Yenwei Chen
VolumeNet: A Lightweight Parallel Network for Super-Resolution of MR and CT Volumetric Data
VolumeNet:用于 MR 和 CT 体积数据超分辨率的轻量级并行网络
  • DOI:
    10.1109/tip.2021.3076285
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Li, Yinhao;Iwamoto, Yutaro;Chen, Yen-Wei
  • 通讯作者:
    Chen, Yen-Wei
Parallel-Connected Residual Channel Attention Network for Remote Sensing Image Super-Resolution
  • DOI:
    10.1007/978-3-030-69756-3_2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinhao Li;Yutaro Iwamoto;Lanfen Lin;Yenwei Chen
  • 通讯作者:
    Yinhao Li;Yutaro Iwamoto;Lanfen Lin;Yenwei Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LI YINHAO其他文献

LI YINHAO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of a real-time evaluation method using an AI-based image processing system in liver tumor ablaition
基于人工智能的图像处理系统开发肝脏肿瘤消融实时评估方法
  • 批准号:
    23K11923
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of big data analysis platform for fish behavior in the sea by image processing, change detection, and machine learning techniques
利用图像处理、变化检测、机器学习技术构建海洋鱼类行为大数据分析平台
  • 批准号:
    23K14005
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing next-generation, AI-enabled, medical image processing for multiple sclerosis clinical trials and routine care.
开发用于多发性硬化症临床试验和日常护理的下一代人工智能医学图像处理。
  • 批准号:
    2877679
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Studentship
CRII: SHF: RUI: Custom Hardware Accelerators for Privacy-Preserving Image Processing
CRII:SHF:RUI:用于保护隐私的图像处理的定制硬件加速器
  • 批准号:
    2347253
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Image Processing Techniques for the Segmentation, Fusion, and Registration of Ultrasound Images from Intracavitary Gynecologic Brachytherapy Procedures
用于腔内妇科近距离放射治疗过程中超声图像的分割、融合和配准的图像处理技术
  • 批准号:
    557687-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Postdoctoral Fellowships
Development of an Image Processing Algorithm to Customize Cochlear Implant Procedures
开发用于定制人工耳蜗植入程序的图像处理算法
  • 批准号:
    548003-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Creating a Technological Infrastructure for the Digital Restoration of Cultural Properties Using Statistical Image Processing and Deep Learning
利用统计图像处理和深度学习为文化财产数字化修复创建技术基础设施
  • 批准号:
    22H00748
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and utilization of digital / analog teaching materials using 3D image processing and 3D printers for biological education
利用3D图像处理和3D打印机进行生物教育的数字/模拟教材的开发和利用
  • 批准号:
    22K02988
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Image processing platform to identify photosynthetic pigment density to measure nitrogen content and manage fertilizer (Smart Sustainable Fertilizer Manager)
I-Corps:图像处理平台,用于识别光合色素密度,测量氮含量并管理肥料(智能可持续肥料管理器)
  • 批准号:
    2227256
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
  • 批准号:
    RGPIN-2018-03966
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了