Flow Strength and Acoustic Emissions of Earth Materials at High Pressures

高压下地球材料的流动强度和声发射

基本信息

项目摘要

Dynamic mantle processes in the Earth that drive tectonic plate motions have shaped our planet into one that is unique in the solar system. Despite breakthroughs in laboratory rock-deformation studies, our understanding of the mechanisms behind plate motions, within the framework known as plate tectonics, are still quite primitive due principally to experimental limitations. Experimental measurements on high temperature flow of crustal and mantle rocks commenced in the 1960s, but highly accurate stress-strain measurements could only be made at crustal conditions. A second major development occurred in the 2000s when multianvil technology was combined with in situ synchrotron X-ray diffraction techniques to estimate sample stresses during controlled deformation at high pressures. However, due to a poor theoretical understanding and measurement limitations, stress estimates still have unacceptable uncertainties of up to 1 GPa. This lack in accuracy prevents robust measurements on the flow, i.e. viscosity, of mantle rocks from being made.A third breakthrough in the field of high pressure rock physics is necessary to progress further. In this project an internal piezoelectric stress sensor for large volume, high pressure devices will be developed and the viscosity of olivine will be precisely determined at high pressures. In addition, the stress sensor will be used as an application for stress measurements in conjunction with acoustic emissions detection and localization during rock deformation. Preliminary work has shown the clear feasibility and superiority of this technology over other methods. Using the developed apparatus, two principal outstanding issues will be experimentally addressed. 1) The cause and magnitude of viscosity changes responsible for the transition in rheological properties between the lithosphere and asthenosphere will be gauged. 2) The origin of subduction-zone earthquakes by means of in situ acoustic emissions recordings will be studied. Achievement of the objectives above enables future collaborations with geodynamicists (e.g. at the Bayerisches Geoinstitut) to scale up processes in the laboratory to the Earth using numerical models. The expected outcomes of the Flac project are therefore crucial towards building up a sound understanding of the inner workings of the Earth.
地球中驱动构造板块运动的动态地幔过程将我们的星球塑造成太阳系中独一无二的星球。尽管在实验室岩石变形研究中取得了突破,但我们对板块运动背后的机制的理解,在称为板块构造的框架内,仍然非常原始,主要是由于实验的限制。对地壳和地幔岩石高温流动的实验测量始于20世纪60年代,但只有在地壳条件下才能进行高精度的应力-应变测量。第二个重大发展发生在21世纪初,当时多砧技术与原位同步加速器X射线衍射技术相结合,以估计高压下受控变形期间的样品应力。然而,由于理论认识不足和测量限制,应力估计仍然具有高达1 GPa的不可接受的不确定性。这种精度上的不足阻碍了对地幔岩石流动(即粘度)的可靠测量。高压岩石物理学领域的第三个突破是进一步发展的必要条件。本计画将研制一种适用于大体积、高压装置的内部压电式应力感测器,并精确测定高压下橄榄石的黏度。此外,应力传感器将被用作在岩石变形期间结合声发射检测和定位的应力测量的应用。初步工作表明,这项技术明显可行,优于其他方法。使用开发的设备,两个主要的悬而未决的问题将实验解决。1)将测量岩石圈和软流圈之间的流变性质的转变负责的粘度变化的原因和幅度。2)将通过现场声发射记录研究俯冲带地震的起源。上述目标的实现使得未来能够与地球动力学家(例如在Bayerisches Geoinstitut)合作,使用数值模型将实验室中的过程扩大到地球。因此,Flac项目的预期成果对于建立对地球内部运作的正确理解至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Daniel J. Frost, since 5/2017其他文献

Professor Dr. Daniel J. Frost, since 5/2017的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
  • 批准号:
    2906344
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
  • 批准号:
    2305448
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
CAREER: Recycled Polymers of Enhanced Strength and Toughness: Predicting Failure and Unraveling Deformation to Enable Circular Transitions
职业:增强强度和韧性的再生聚合物:预测失效和解开变形以实现圆形过渡
  • 批准号:
    2338508
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    NE/Y005686/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
OVERCOMP: Interface Formation and Bond Strength Prediction in Composite Injection Overmoulding
OVERCOMP:复合材料注塑包覆成型中的界面形成和粘合强度预测
  • 批准号:
    EP/X041360/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigation on the Sub-structure development in HSA6 alloys to maximise strength via Thermomechanical simulations
通过热机械模拟研究 HSA6 合金的子结构开发以最大限度地提高强度
  • 批准号:
    2901174
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of novel metastable beta titanium alloys with ultrahigh strength and large ductility
超高强度大塑性新型亚稳态β钛合金的研制
  • 批准号:
    24K08018
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realization of Ultralight and High Strength Materials by Fine Synthesis of Three-Dimensional Polymer Network
三维聚合物网络精细合成实现超轻高强材料
  • 批准号:
    23H02016
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
  • 批准号:
    23K08226
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了