Hitchin components for orbifolds

Orbifolds 的 Hitchin 组件

基本信息

  • 批准号:
    340014145
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Teichmüller spaces parametrise the set of hyperbolic structures on a surface. They can also be seen as spaces of discrete and faithful representations of the fundamental group of the surface in PSL(2,R). These representations are called Fuchsian representations.Higher Teichmüller Theory tries to generalise the theory of Teichmüller spaces replacing the group PSL(2,R) with another Lie group G. In this project G will be usually PSL(n,R). Hitchin representations are a special kind of representations of the surface group in PSL(n,R), having similar properties to the Fuchsian representations. The sets of such representations are called Hitchin components, and they generalise Teichmüller spaces.In this project the study of Hitchin components will be generalised to a more general family of groups, namely the fundamental groups of 2-dimensional orbifolds. This is a large family of groups including for example 2-dimensional hyperbolic Coxeter groups. The case of PSL(2,R) was already studied by Thurston, who introduced hyperbolic structures on orbifolds and studied their Teichmüller spaces. The case of PSL(3,R) was studied by Choi and Goldman. This project is about the general case of Hitchin components of orbifold groups for PSL(n,R). We already proved some preliminary results, the Hitchin components are homeomorphic to a vector space, and we have a formula for their dimensions.This study will be further developed to get a better understanding of these Hitchin components. The most interesting cases are the cases of "small" orbifolds, some orbifolds whose Hitchin components have very small dimensions, say 0, 1 or 2. We can classify all the Hitchin components of dimension 0, this is very interesting because it gives surprising examples of rigidity. Some applications to the deformation spaces of real projective structures on 3-manifolds are given, we can find examples of Seifert fibered 3-manifolds admitting a rigid real projective structure.The case of Hitchin components of dimension 1 is also very interesting, because the geometry of these components can be easy to understand. Moreover, they are a very good candidate to study phenomena of degeneration: what happens when a sequence of representations diverges?Moreover, geometric coordinates on these Hitchin components for orbifolds will be developed, a suitable generalization of the Fock-Goncharov coordinates. Having explicit coordinates can be very useful to understand these deformation spaces.
Teichmüller空间参数化曲面上的双曲结构集。它们也可以被看作是PSL(2,R)中曲面基本群的离散和忠实表示的空间。高等泰希米勒理论试图推广泰希米勒空间的理论,用另一个李群G代替群PSL(2,R)。在这个项目中,G通常是PSL(n,R)。希钦表示是PSL(n,R)中曲面群的一种特殊表示,具有与Fuchsian表示相似的性质。这种表示的集合被称为希钦分量,它们推广了Teichmüller空间。在这个项目中,希钦分量的研究将推广到更一般的群族,即二维orbifolds的基本群。这是一个大家族的群体,包括例如2维双曲考克斯特群。PSL(2,R)的情形已经由Thurston研究过,他在orbifolds上引入了双曲结构并研究了它们的Teichmüller空间。Choi和Goldman研究了PSL(3,R)的情形。本项目是关于PSL(n,R)的Orbifold群的Hitchin分支的一般情况。我们已经证明了一些初步的结果,即Hitchin分支同胚于向量空间,并且得到了它们的维数公式,这一研究将进一步发展,以便更好地理解这些Hitchin分支。最有趣的情况是“小”轨道褶皱的情况,一些轨道褶皱的希钦分量具有非常小的维度,例如0,1或2。我们可以对0维的所有希钦分量进行分类,这非常有趣,因为它给出了令人惊讶的刚性示例。给出了三维流形上的真实的射影结构的变形空间的一些应用,我们可以找到Seifert纤维三维流形允许刚性真实的射影结构的例子,一维Hitchin分支的情况也很有趣,因为这些分支的几何很容易理解。此外,它们是研究退化现象的一个很好的候选者:当一个表示序列发散时会发生什么?此外,几何坐标的这些Hitchin组件orbifolds将开发,一个适当的推广的福克-Goncharov坐标。拥有显式坐标对于理解这些变形空间非常有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Daniele Alessandrini, Ph.D.其他文献

Dr. Daniele Alessandrini, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

白茅根抗肾小球肾炎物质基础及免疫机制研究
  • 批准号:
    30860363
  • 批准年份:
    2008
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Reducing the cost of fuel cell components and pilot production of bipolar plate coatings
降低燃料电池组件成本并试产双极板涂料
  • 批准号:
    10088165
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: Connecting eukaryotic electron transfer components to nitrogenase using a bacterial chassis
职业:使用细菌底盘将真核电子传递组件连接到固氮酶
  • 批准号:
    2338085
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Micro-integrated coherent light sources and sensing components on a surface-wave platform
表面波平台上的微集成相干光源和传感组件
  • 批准号:
    24K00918
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
  • 批准号:
    83007861
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Innovation Loans
Leaky Dielectric Platform for Integrated Terahertz Components
用于集成太赫兹组件的漏电介质平台
  • 批准号:
    DP240100162
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Automated Testbed for Building Systems Components
建筑系统组件自动化测试台
  • 批准号:
    530641094
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
  • 批准号:
    2325755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了